15,015 research outputs found

    Communication: Linear-expansion shooting techniques for accelerating self-consistent field convergence

    Get PDF
    Based on the corrected Hohenberg-Kohn-Sham total energy density functional [Y. A. Zhang and Y. A. Wang, J. Chem. Phys. 130, 144116 (2009)]10.1063/1. 3104662, we have developed two linear-expansion shooting techniques (LIST)- direct LIST (LISTd) and indirect LIST (LISTi), to accelerate the convergence of self-consistent field (SCF) calculations. Case studies show that overall LISTi is the most robust and efficient algorithm for accelerating SCF convergence, whereas LISTd is advantageous in the early stage of an SCF process. More importantly, LISTi outperforms Pulays direct inversion in the iterative subspace (DIIS) [P. Pulay, J. Comput. Chem. 3, 556 (1982)]10.1002/jcc.540030413 and its two recent improvements, energy-DIIS [K. N. Kudin, G. E. Scuseria, and E. Cancs, J. Chem. Phys. © 2011 American Institute of Physics.published_or_final_versio

    Localized-density-matrix implementation of time-dependent density-functional theory

    Get PDF
    The localized single-electron density matrix implementation of time-dependent density-functional theory (TDDFT) was discussed. The excited state properties of atoms and molecules were calculated using the TDDFT. In this regard, the calculations of the absorption spectra of polyacetylene oligomers and linear alkanes by using the TDDFT, were also presented.published_or_final_versio

    Dissipative time-dependent quantum transport theory

    Get PDF
    published_or_final_versio

    Time-dependent density-functional theory/localized density matrix method for dynamic hyperpolarizability

    Get PDF
    Time-dependent density-functional theory/localized density matrix method (TDDFT/LDM) was developed to calculate the excited state energy, absorption spectrum and dynamic polarizability. In the present work we generalize it to calculate the dynamic hyperpolarizabilities in both time and frequency domains. We show that in the frequency domain the 2n+1 rule can be derived readily and the dynamic hyperpolarizabilities are thus calculated efficiently. Although the time-domain TDDFT/LDM is time consuming, its implementation is straightforward because the evaluation of the derivatives of exchange-correlation potential with respect to electron density is avoided. Moreover, the time-domain method can be used to simulate higher order response which is very difficult to be calculated with the frequency-domain method. © 2007 American Institute of Physics.published_or_final_versio

    Linear-scaling time-dependent density-functional theory

    Get PDF
    A linear-scaling time-dependent density-functional theory is developed to evaluate the optical response of large molecular systems. The two-electron Coulomb integrals are evaluated with the fast multipole method, and the calculation of exchange-correlation quadratures utilizes the locality of exchange-correlation functional within the adiabatic local density approximation and the integral prescreening technique. Instead of many-body wave function, the equation of motion is solved for the reduced single-electron density matrix in the time domain. Based on its "nearsightedness", the reduced density matrix cutoffs are employed to ensure that the computational time scales linearly with the system size. As an illustration, the resulting time-dependent density-functional theory is used to calculate the absorption spectra of linear alkanes, and the linear scaling of computational time versus the system size is clearly demonstrated.published_or_final_versio

    Modelling and simulation of counter-current and confined jet reactors for hydrothermal synthesis of nano-materials

    Get PDF
    A confined jet mixer and a counter-current mixer for the continuous hydrothermal flow synthesis of TiO2 nano-materials under supercritical water conditions have been investigated using computational fluid dynamics (CFD). The fluid flow and heat transfer behaviour, including velocity and temperature profiles in both reactor configurations, are studied using the CFD tool ANSYS Fluent. The tracer concentration profiles are also simulated via solving species equations from which the mixing behaviour in the reactors is examined. A combined CFD and population balance model is used to predict the size distribution. The predicted temperature distributions for both reactors were found to be in good agreement with experimentally measured data. Detailed comparison of the hydrodynamic and thermal behaviours, and particle size distributions between the two reactors helped in the identification of key factors that affect the reactor performance, and also provided suggestions for reactor design optimisation and scale-up
    corecore