1,940 research outputs found
The Quark Beam Function at NNLL
In hard collisions at a hadron collider the most appropriate description of
the initial state depends on what is measured in the final state. Parton
distribution functions (PDFs) evolved to the hard collision scale Q are
appropriate for inclusive observables, but not for measurements with a specific
number of hard jets, leptons, and photons. Here the incoming protons are probed
and lose their identity to an incoming jet at a scale \mu_B << Q, and the
initial state is described by universal beam functions. We discuss the
field-theoretic treatment of beam functions, and show that the beam function
has the same RG evolution as the jet function to all orders in perturbation
theory. In contrast to PDF evolution, the beam function evolution does not mix
quarks and gluons and changes the virtuality of the colliding parton at fixed
momentum fraction. At \mu_B, the incoming jet can be described perturbatively,
and we give a detailed derivation of the one-loop matching of the quark beam
function onto quark and gluon PDFs. We compute the associated NLO Wilson
coefficients and explicitly verify the cancellation of IR singularities. As an
application, we give an expression for the next-to-next-to-leading logarithmic
order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos
fixed; v3: journal versio
Gauge invariant definition of the jet quenching parameter
In the framework of Soft-Collinear Effective Theory, the jet quenching
parameter, , has been evaluated by adding the effect of Glauber gluon
interactions to the propagation of a highly-energetic collinear parton in a
medium. The result, which holds in covariant gauges, has been expressed in
terms of the expectation value of two Wilson lines stretching along the
direction of the four-momentum of the parton. In this paper, we show how that
expression can be generalized to an arbitrary gauge by the addition of
transverse Wilson lines. The transverse Wilson lines are explicitly computed by
resumming interactions of the parton with Glauber gluons that appear only in
non-covariant gauges. As an application of our result, we discuss the
contribution to coming from transverse momenta of order in a
medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
On the Computational Complexity of Vertex Integrity and Component Order Connectivity
The Weighted Vertex Integrity (wVI) problem takes as input an -vertex
graph , a weight function , and an integer . The
task is to decide if there exists a set such that the weight
of plus the weight of a heaviest component of is at most . Among
other results, we prove that:
(1) wVI is NP-complete on co-comparability graphs, even if each vertex has
weight ;
(2) wVI can be solved in time;
(3) wVI admits a kernel with at most vertices.
Result (1) refutes a conjecture by Ray and Deogun and answers an open
question by Ray et al. It also complements a result by Kratsch et al., stating
that the unweighted version of the problem can be solved in polynomial time on
co-comparability graphs of bounded dimension, provided that an intersection
model of the input graph is given as part of the input.
An instance of the Weighted Component Order Connectivity (wCOC) problem
consists of an -vertex graph , a weight function ,
and two integers and , and the task is to decide if there exists a set
such that the weight of is at most and the weight of
a heaviest component of is at most . In some sense, the wCOC problem
can be seen as a refined version of the wVI problem. We prove, among other
results, that:
(4) wCOC can be solved in time on interval graphs,
while the unweighted version can be solved in time on this graph
class;
(5) wCOC is W[1]-hard on split graphs when parameterized by or by ;
(6) wCOC can be solved in time;
(7) wCOC admits a kernel with at most vertices.
We also show that result (6) is essentially tight by proving that wCOC cannot
be solved in time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the
conference proceedings of ISAAC 201
Pauli's Principle in Probe Microscopy
Exceptionally clear images of intramolecular structure can be attained in
dynamic force microscopy through the combination of a passivated tip apex and
operation in what has become known as the "Pauli exclusion regime" of the
tip-sample interaction. We discuss, from an experimentalist's perspective, a
number of aspects of the exclusion principle which underpin this ability to
achieve submolecular resolution. Our particular focus is on the origins,
history, and interpretation of Pauli's principle in the context of interatomic
and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using
Dynamic Force Microscopy", a book which is part of the "Advances in Atom and
Single Molecule Machines" series published by Springer
[http://www.springer.com/series/10425]. To be published late 201
Chiral Generations on Intersecting 5-branes in Heterotic String Theory
We show that there exist two 27 and one 27 bar of E6, net one D=4, N=1 chiral
matter supermultiplet as zero modes localized on the intersection of two
5-branes in the E8 x E8 heterotic string theory. The smeared intersecting
5-brane solution is used via the standard embedding to construct a heterotic
background, which provides, after a compactification of some of the transverse
dimensions, a five-dimensional Randall-Sundrum II like brane-world set-up in
heterotic string theory. As a by-product, we present a new proof of anomaly
cancellation between those from the chiral matter and the anomaly inflow onto
the brane without small instanton.Comment: 26 pages, 5 figures; references added, typo correcte
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Schwannoma of the external auditory canal: a case report
BACKGROUND: Schwannomas are uncommon benign tumors of the external auditory canal. The clinical features, the differential diagnosis, and the surgical treatment of these lesions are discussed. CASE PRESENTATION: A 51-year-old patient presented with a mass obliterating the external auditory meatus. Excisional biopsy was performed. Diagnosis was reported to be schwannoma by histopathologic examination. CONCLUSION: Schwannoma, rarely seen in the external auditory canal, can be managed by a precise excision of the tumor via transmeatal approach
Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories
Using localization, matrix model and saddle-point techniques, we determine
exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge
theories. Focusing at planar and large `t Hooft couling limits, we compare its
asymptotic behavior with well-known exponential growth of Wilson loop in N=4
super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N
fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential
growth -- at most, it can grow a power of `t Hooft coupling. For theory with
gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two
Wilson loops associated with two gauge groups. We find Wilson loop in untwisted
sector grows exponentially large as in N=4 super Yang-Mills theory. We then
find Wilson loop in twisted sector exhibits non-analytic behavior with respect
to difference of two `t Hooft coupling constants. By letting one gauge coupling
constant hierarchically larger/smaller than the other, we show that Wilson
loops in the second type theory interpolate to Wilson loop in the first type
theory. We infer implications of these findings from holographic dual
description in terms of minimal surface of dual string worldsheet. We suggest
intuitive interpretation that in both type theories holographic dual background
must involve string scale geometry even at planar and large `t Hooft coupling
limit and that new results found in the gauge theory side are attributable to
worldsheet instantons and infinite resummation therein. Our interpretation also
indicate that holographic dual of these gauge theories is provided by certain
non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic
changes, v4. published versio
A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings
In the N=1 four-dimensional new-minimal supergravity framework, we
supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor.
This coupling, although introduces a non-minimal derivative interaction of
curvature to matter, it does not introduce harmful higher-derivatives. For this
construction, we employ off-shell chiral and real linear multiplets. Physical
scalars are accommodated in the chiral multiplet whereas curvature resides in a
linear one.Comment: 18 pages, version published at JHE
- …