112 research outputs found
Polymorphismes biochimiques de la poule domestique. III. – Étude des protéines de l'albumen de la souche marans S 33
International audienc
Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis.
The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15 <sup>CretdTomato</sup> mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia
A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome.
Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets. We performed RNA sequencing of hypothalamus from individuals with Prader-Willi syndrome (PWS), a genetic obesity syndrome characterized by severe hyperphagia. We found that upregulated genes overlap with the transcriptome of mouse Agrp neurons that signal hunger, while downregulated genes overlap with the expression profile of Pomc neurons activated by feeding. Downregulated genes are expressed mainly in neuronal cells and contribute to neurogenesis, neurotransmitter release, and synaptic plasticity, while upregulated, predominantly microglial genes are involved in inflammatory responses. This transcriptional signature may be mediated by reduced brain-derived neurotrophic factor expression. Additionally, we implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS. Transcriptomic analysis of the human hypothalamus may identify neural mechanisms involved in energy homeostasis and potential therapeutic targets for weight loss
A Novel Obligate Intracellular Gamma-Proteobacterium Associated with Ixodid Ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov
Background: Obligate intracellular bacteria of arthropods often exhibit a significant role in either human health or arthropod ecology. Methodology/Principal Findings: An obligate intracellular gamma-proteobacterium was isolated from the actively questing hard tick Ixodes ricinus using mammalian and amphibian cell lines. Transmission electron microscopy revealed a unique morphology of the bacterium, including intravacuolar localization of bacteria grouped predominantly in pairs and internal structures composed of electron-dense crystal-like structures and regular multilayer sheath-like structures. The isolate 20B was characterized to determine its taxonomic position using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that this strain belongs to the family Coxiellaceae, order Legionellales of Gamma-proteobacteria, and the closest relatives are different Rickettsiella spp. The level of 16S rRNA gene sequence similarity between strain 20B and other recognized species of the family was below 94.5%. Partial sequences of the rpoB, parC and ftsY genes confirmed the phylogenetic position of the new isolate. The G+C content estimated on the basis of whole genome analysis of strain 20B was 37.88%. On the basis of its phenotypic and genotypic properties, together with phylogenetic distinctiveness, we propose that strain 20B to be classified in the new genus Diplorickettsia as the type strain of a novel species named Diplorickettsia massiliensis sp. nov. Conclusions/Significance: Considering the source of its isolation (hard tick, often biting humans) the role of this bacterium in the pathology of humans, animals and ticks should be further investigated
A Comparative Analysis Shows Morphofunctional Differences between the Rat and Mouse Melanin-Concentrating Hormone Systems
Sub-populations of neurons producing melanin-concentrating hormone (MCH) are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle
The Melanin-Concentrating Hormone (MCH) System Modulates Behaviors Associated with Psychiatric Disorders
Deficits in sensorimotor gating measured by prepulse inhibition (PPI) of the startle have been known as characteristics of patients with schizophrenia and related neuropsychiatric disorders. PPI disruption is thought to rely on the activity of the mesocorticolimbic dopaminergic system and is inhibited by most antipsychotic drugs. These drugs however act also at the nigrostriatal dopaminergic pathway and exert adverse locomotor responses. Finding a way to inhibit the mesocorticolimbic- without affecting the nigrostriatal-dopaminergic pathway may thus be beneficial to antipsychotic therapies. The melanin-concentrating hormone (MCH) system has been shown to modulate dopamine-related responses. Its receptor (MCH1R) is expressed at high levels in the mesocorticolimbic and not in the nigrostriatal dopaminergic pathways. Interestingly a genomic linkage study revealed significant associations between schizophrenia and markers located in the MCH1R gene locus. We hypothesize that the MCH system can selectively modulate the behavior associated with the mesocorticolimbic dopamine pathway. Using mice, we found that central administration of MCH potentiates apomorphine-induced PPI deficits. Using congenic rat lines that differ in their responses to PPI, we found that the rats that are susceptible to apomorphine (APO-SUS rats) and exhibit PPI deficits display higher MCH mRNA expression in the lateral hypothalamic region and that blocking the MCH system reverses their PPI deficits. On the other hand, in mice and rats, activation or inactivation of the MCH system does not affect stereotyped behaviors, dopamine-related responses that depend on the activity of the nigrostriatal pathway. Furthermore MCH does not affect dizocilpine-induced PPI deficit, a glutamate related response. Thus, our data present the MCH system as a regulator of sensorimotor gating, and provide a new rationale to understand the etiologies of schizophrenia and related psychiatric disorders
Nucleotide sequence of the polyhedrin gene of Spodoptera littoralis multiple nucleocapsid nuclear polyhedrosis virus
International audienc
- …