24 research outputs found

    Antiviral Silencing and Suppression of Gene Silencing in Plants

    Get PDF
    RNA silencing is an evolutionary conserved sequence-specific gene inactivation mechanism that contributes to the control of development, maintains heterochromatin, acts in stress responses, DNA repair and defends against invading nucleic acids like transposons and viruses. In plants RNA silencing functions as one of the main immune systems. RNA silencing process involves the small RNAs and trans factor components like Dicers, Argonautes and RNA-dependent RNA poly- merases. To deal with host antiviral silencing responses viruses evolved mecha- nisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Due to the overlap between endogenous and antiviral silencing pathways while blocking antiviral pathways viruses also impact endogenous silencing processes. Here we provide an overview of antiviral silencing pathway, host factors implicated in it and the crosstalk between antiviral and endogenous branches of silencing. We summarize the current status of knowledge about the viral counter-defense strategies acting at various steps during virus infection in plants with the focus on representative, well studied silencing suppres- sor proteins. Finally we discuss future challenges of the antiviral silencing and counter-defense research field

    PGP potential, abiotic stress tolerance and antifungal activity of <i>Azotobacter</i> strains isolated from paddy soils

    No full text
    322-331Azotobacter strains were isolated by serial dilution method and colonies were viscous, smooth, glistening, and brown to black colour on Jenson’s N-free agar. Morphological and biochemical tests showed characteristic features of Azotobacter. Further, molecular analyses revealed the presence of different Azotobacter species viz., <i style="mso-bidi-font-style: normal">A. armeniacus, A. chroococcum, A. salinestris, A. tropicalis and A. vinelandii. The isolates were tested for their ability of nitrogen fixation, indole acetic acid (IAA), gibberllic acid production and phosphate solubilization. Four isolates (GVT-1, GVT-2 KOP-11 and SND-4) were efficient in fixation of highest amount of N2 (29.21 ÎŒg NmL-1day-1), produced IAA (25.50 ”g mL-1), gibberllic acid (17.25 ÎŒg 25 mL-1) and formed larger P solubilizing zone (13.4 mm). Some of the Azotobacter strains were produced siderophores, hydrogen cyanide and were positive for ammonia production with respect to antifungal activity of <i style="mso-bidi-font-style: normal">Azotobacter was tested with dual culture method and A. tropicalis inhibited the growth of Fusarium, Aspergillus and Alternaria species. <i style="mso-bidi-font-style: normal">Azotobacter isolates were tested against salt (0-10%), temperature (4-55ÂșC), pH (5.0-10) and insecticide chloropyrifos (0-3%) tolerance study. Among them, A. chroococcum was found tolerant to a maximum of 6% NaCl with a temperature of 35-45ÂșC and to a pH up to 8. All the 4 strains showed effective growth against 3% chloropyrifos concentration. The studies revealed that the Azotobacter strains not only produced plant growth promoting substances but are also tolerant to abiotic stresses such as temperature, pH and insecticides.</span
    corecore