176 research outputs found

    Mycobacterium tuberculosis Complex Lipid Virulence Factors Preserved in the 17,000 Year Old Skeleton of an Extinct Bison, Bison antiquus

    Get PDF
    Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation. In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a 17,000 year old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two samples from this bison. Fluorescence high-performance liquid chromatography (HPLC) indicated the presence of mycolic acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However, pristine profiles of C29, C30 and C32 mycocerosates and C27 mycolipenates, typical of the Mycobacterium tuberculosis complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl ester derivatives. These findings were supported by the detection of C34 and C36 phthiocerols, which are usually esterified to the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a zoonosis, before transfer to humans, is given detailed consideration and discussion

    Preliminary findings on the paleomicrobiological study of 400 naturally mummified human remains from upper Nubia

    Get PDF
    We present 400 mummies excavated from two early Christian burial sites at Kulubnarti, between the 2nd and 3rd cataracts of the Nile in Northern Sudan, prior to the flooding caused by the Aswan Dam. One site was on an island in the Nile dated from 550-750 AD. The other was on the Nile western bank and was in use from c.750-1500 AD. Due to the exceptionally dry climate many of the remains were naturally mummified. Analysis of diet, via chemical examination of hair and of coprolites, had indicated possible deficiencies in vitamins B6, B12, folacin and vitamin C, suggesting iron deficiency. The presence of criba orbitalia, a pathological lesion of the roof of the eye socket (orbit), also suggests iron deficiency anaemia but may also be caused by inflammation. Anaemia is found in several infectious diseases, and severe iron deficiency increases susceptibility to disease. Tuberculosis was widespread in ancient and Roman Egypt, and there was historical contact with Upper Nubia via the Nile. The presence of Acacia pollen in coprolites suggested the possibility of leishmaniasis, as these trees are the habitat of the sand fly vector of the protozoan pathogen. The area is known today for the many infectious diseases afflicting its inhabitants, but were these present in antiquity? We have, therefore, undertaken a study of diseases in Kulubnarti. Initially we looked for evidence of tuberculosis and leishmaniasis. We anticipate shortly broadening the search to include brucellosis, malaria, hepatitis and West Nile fever viruses. Schistosomasis was considered but at this level the Nile flows swiftly and the intermediate host snail is not present so was at present not ocnsidered. Ribs were examined for Mycobacterium tuberculosis DNA, using nested PCR targeting a123 bp sequence on the repetitive element IS6110. Material from the heads of the long bones, possible bone marrow, was examined for Leishmania species using a PCR which amplifies a 119 bp-conserved region of the minicircle kinetoplast DNA. Initial results indicate that M. tuberculosis and Leishmania sp were present in both populations

    Comparison of the structure and activity of glycosylated and asglycosylated human carboxylesterase 1

    Get PDF
    Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme

    A Two-Hybrid Assay to Study Protein Interactions within the Secretory Pathway

    Get PDF
    Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H), a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA) binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway

    KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi

    Get PDF
    Leishmaniasis is a neglected disease caused by the Leishmania parasite and transmitted by the bite of an infective sand fly. Despite the importance of this disease there is no vaccine available for humans. Studies have shown that vector-transmitted infections are more virulent, promoting parasite establishment and abrogating protection observed against needle-injected parasites in vaccinated mice. KSAC and L110f, derived from Leishmania-based polyproteins, protected mice against the needle-injected parasites. Here, we tested the two molecules for their capacity to protect mice against cutaneous leishmaniasis transmitted by an infective sand fly. Our results show that KSAC, but not L110f, confers protection against Leishmania transmitted by sand fly bites where protection was correlated to a strong immune response to Leishmania antigens by memory T cells before and after sand fly transmission of the parasite. This is the first report of a Leishmania-based vaccine that confers protection against a virulent sand fly challenge. Our results support the importance of screening Leishmania vaccine candidates using infective sand flies before moving forward with the costly steps of vaccine development

    Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity

    Get PDF
    Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8(+) T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals

    Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway

    Get PDF
    Trehalose 6,6′-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle−/− mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses
    • …
    corecore