4,391 research outputs found

    Transcranial Direct Current Stimulation Modulates Working Memory Maintenance Processes in Healthy Individuals

    Full text link
    The effects of transcranial direct current stimulation (tDCS) at the pFC are often investigated using cognitive paradigms, particularly working memory tasks. However, the neural basis for the neuromodulatory cognitive effects of tDCS, including whi ch subprocesses are af f ected by sti mul ati on, i s not completely understood. We investigated the effects of tDCS on working memory task-related spectral activity during and after tDCS to gain better insights into the neurophysiological changes associated with stimulation. We reanalyzed data from 100 healthy participants grouped by allocation to receive either sham (0 mA, 0.016 mA, and 0.034 mA) or active (1 mA or 2 mA) stimulation during a 3-back task. EEG data were used to analyze event-related spectral power in frequency bands associated with working memory performance. Frontal theta event-related synchronization (ERS) was significantly reduced post-tDCS in the active group. Participants receiving active tDCS had slower RTs following tDCS compared with sham, suggesting interference with practice effects associated with task repetition. Theta ERS was not significantly correlated with RTs or accuracy. tDCS reduced frontal theta ERS poststimulation, suggesting a selective disruption to working memory cognitive control and maintenance processes. These findings suggest that tDCS selectively affects specific subprocesses during working memory, which may explain heterogenous behavioral effects

    Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Get PDF
    BACKGROUND: Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. METHODS: Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. RESULTS: Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other essential oils at the diagnostic dose. CONCLUSIONS: C. citratus, E. tereticornis, E. citriodora, C. ambrosioides and C. schoenanthus are potential promising plant sources for alternative compounds to pyrethroids, for the control of the Anopheles malaria vector in Benin. The efficacy of their essential oils is possibly based on their chemical compositions in which major and/or minor compounds have reported insecticidal activities on various pests and disease vectors such as Anopheles

    The left anterior right temporal (LART) placement for electroconvulsive therapy: A computational modelling study

    Full text link
    Electrode placement in electroconvulsive therapy (ECT) has a major impact on treatment efficacy and cognitive side effects. Left Anterior Right Temporal (LART) is a lesser utilised bilateral montage which may produce more optimal clinical outcomes relative to standard bitemporal ECT. In this study we used computational modelling to explore how stimulation effects from LART and two novel variants (LART – F3 and LART – Frontal) compared to the more common bilateral placements of bitemporal and bifrontal ECT. High resolution finite element human head models were generated from MRI scans of three subjects with Major Depressive Disorder. Differences in regional stimulation were examined through parametric tests for regions of interest and subtraction maps. Compared to bitemporal ECT, LART – Original resulted in significantly greater stimulation of the left cingulate gyrus (hypothesised to be associated with treatment efficacy), and relatively reduced stimulation of the bilateral hippocampi (potentially associated with cognitive side effects). No additional clinical benefit was suggested with the novel LART placements compared to the original LART. The original LART placement is a promising montage for further clinical investigation

    Safety of repeated sessions of transcranial direct current stimulation: A systematic review

    Full text link
    Background: Repeated sessions of transcranial direct current stimulation (tDCS) are increasingly used for therapeutic applications. However, adverse events (AEs) associated with repeated sessions have not been comprehensively evaluated. Objective: The aim of this study was therefore to evaluate the safety of repeated sessions of tDCS, examining AE risk relative to tDCS exposure. Further, to identify whether certain participant populations are particularly at risk from tDCS. Methods: A systematic review and meta-analysis included sham-controlled studies (up to June 2017) involving two or more tDCS sessions, spaced not more than a day apart. Data was extracted on AEs reported, total tDCS exposure (cumulative charge), and diagnostic groups (Healthy, Pain Disorder, Stroke, Neurocognitive Disorder, Neuropsychiatric Disorder, and Other). Univariate simple linear meta-regression analyses examined AE likelihood, comparing active and sham tDCS, with increasing exposure. Rates of AEs were compared for diagnostic groups. Results: 158 studies (total 4130 participants) met inclusion criteria and were included for quantitative analyses. The incidence of AEs (examined per session, by proportion of participants, and by the number of studies reporting AEs) did not increase with higher levels of tDCS exposure. Furthermore, AE rates were not found to be greater for any diagnostic group. Conclusions: Little evidence was found to suggest that repeated sessions of active tDCS pose increased risk to participants compared to sham tDCS within the limits of parameters used to date. Increased risks associated with greater levels of exposure to tDCS, or rare and under-reported AEs, however, cannot be ruled out

    Application of k-means method to pattern recognition in on-line cable partial discharge monitoring

    Get PDF
    On-line Partial Discharge (PD) monitoring is being increasingly adopted in an effort to improve asset management of the vast network of MV and HV power cables. This paper presents a novel method for autonomous recognition of PD patterns recorded under conditions in which a phase-reference voltage waveform from the HV conductors is not available, as is often the case in on-line PD based insulation condition monitoring. The paper begins with an analysis of two significant challenges for automatic PD pattern recognition. A methodology is then proposed for applying the K-Means method to the task of recognizing PD patterns without phase reference information. Results are presented to show that the proposed methodology is capable of recognising patterns of PD activity in on-line monitoring applications for both single-phase and three-phase cables and is also effective technique for rejecting interference signals

    The Darlington and Northallerton Long Term Asthma Study: pulmonary function

    Get PDF
    BACKGROUND: The Darlington and Northallerton Asthma Study is an observational cohort study started in 1983. At that time little was published about long term outcome in asthma and the contribution of change in reversible disease or airway remodelling to any excess deterioration in function. The study design included regular review of overall and fixed function lung. We report the trends over fifteen years. METHODS: All asthmatics attending secondary care in 1983, 1988 and 1993 were recruited. Pulmonary function was recorded at attendance and potential best function estimated according to protocol. Rate of decline was calculated over each 5-year period and by linear regression analysis in those seen every time. The influence of potential explanatory variables on this decline was explored. RESULTS: 1724 satisfactory 5-year measurements were obtained in 912 subjects and in 200 subjects on all occasions. Overall rate of decline (ml/year (95%CI)) calculated from 5-year periods was FEV1 ♂41.0 (34.7–47.3), ♀28.9 (23.2–34.6) and best FVC ♂63.1 (55.1–71.2)ml/year, ♀45.8 (40.0–51.6).The principal association was with age. A dominant cubic factor suggested fluctuations in the rate of change in middle life with less rapid decline in youth and more rapid decline in the elderly. Rapid decline was possibly associated with short duration. Treatment step did not predict rate of deterioration. CONCLUSIONS: Function declined non-linearly and more rapidly than predicted from normal subjects. It reports for the first time a cubic relationship between age and pulmonary function. This should be taken into account when interpreting other articles reporting change in function over time

    Validation of a digital photographic method for assessment of dietary quality of school lunch sandwiches brought from home.

    Get PDF
    Background: It is a challenge to assess children's dietary intake. The digital photographic method (DPM) may be an objective method that can overcome some of these challenges. Objective: The aim of this study was to evaluate the validity and reliability of a DPM to assess the quality of dietary intake from school lunch sandwiches brought from home among children aged 7–13 years. Design: School lunch sandwiches (n=191) were prepared to represent randomly selected school lunch sandwiches from a large database. All components were weighed to provide an objective measure of the composition. The lunches were photographed using a standardised DPM. From the digital images, the dietary components were estimated by a trained image analyst using weights or household measures and the dietary quality was assessed using a validated Meal Index of Dietary Quality (Meal IQ). The dietary components and the Meal IQ obtained from the digital images were validated against the objective weighed foods of the school lunch sandwiches. To determine interrater reliability, the digital images were evaluated by a second image analyst. Results: Correlation coefficients between the DPM and the weighed foods ranged from 0.89 to 0.97. The proportion of meals classified in the same or an adjacent quartile ranged from 98% (starch) to 100% (fruits, vegetables, fish, whole grain, and Meal IQ). There was no statistical difference between fish, fat, starch, whole grains, and Meal IQ using the two methods. Differences were found for fruits and vegetables; Bland–Altman analyses showed a tendency to underestimate high amounts of these variables using the DPM. For interrater reliability, kappa statistics ranged from 0.59 to 0.82 across the dietary components and Meal IQ. Conclusions: The standardised DPM is a valid and reliable method for assessing the dietary quality of school lunch sandwiches brought from home

    A new early cognitive screening measure to detect cognitive side-effects of electroconvulsive therapy?

    Full text link
    Cognitive side-effects from electroconvulsive therapy (ECT) can be distressing for patients and early detection may have an important role in guiding treatment decisions over the ECT course. This prospective study examined the utility of an early cognitive screening battery for predicting cognitive side-effects which develop later in the ECT course. The screening battery, together with the Mini Mental Status Examination (MMSE), was administered to 123 patients at baseline and after 3 ECT treatments. A more detailed cognitive battery was administered at baseline, after six treatments (post ECT 6) and after the last ECT treatment (post treatment) to assess cognitive side-effects across several domains: global cognition, anterograde memory, executive function, speed and concentration, and retrograde memory. Multivariate analyses examined the predictive utility of change on items from the screening battery for later cognitive changes at post ECT 6 and post treatment. Results showed that changes on a combination of items from the screening battery were predictive of later cognitive changes at post treatment, particularly for anterograde memory ( p<0.01), after controlling for patient and treatment factors. Change on the MMSE predicted cognitive changes at post ECT 6 but not at post treatment. A scoring method for the new screening battery was tested for discriminative ability in a sub-sample of patients. This study provides preliminary evidence that a simple and easy-to-administer measure may potentially be used to help guide clinical treatment decisions to optimise efficacy and cognitive outcomes. Further development of this measure and validation in a more representative ECT clinical population is required. © 2013 Elsevier Ltd

    Change in Negative Affective Bias following a Single Ketamine Treatment for Treatment-Resistant Depression

    Full text link
    Ketamine has recently emerged as a highly effective new treatment for people with treatment-resistant depression with rapid antidepressant effects. However, these effects are often short lasting, and the potential cognitive mechanisms underlying the therapeutic effects, such as effects on emotional processing bias, remain poorly understood. In the present study, we explored potential changes in emotional and cognitive processing following a single treatment of subcutaneous ketamine in a randomised double-blind controlled study with an active control. Participants with treatment-resistant major depressive disorder (MDD) were recruited from a single site from the Ketamine for Adult Depression Study (KADS Trial) and were randomly assigned to receive racemic ketamine hydrochloride (n=10) or midazolam hydrochloride (n=11) in a 1: 1 ratio. A healthy control sample (n=23) was recruited to attend a single experimental session without any treatment. All MDD participants completed mood ratings and cognitive assessments prior to and one day after a single randomised treatment. The results showed no significant differences in performance changes after treatment across the majority of emotion-related (i.e., Emotional Stroop Task, Affective Go/No-Go Task) and cognitive (Ruff 2 and 7 Selective Attention Test, Controlled Word Association Test) outcome measures. Participants who received ketamine showed a significant improvement in a negative processing bias test (i.e., The Scrambled Sentence Task; Cohen's d=.67, p=.016), which was not significantly associated with improvement in psychological symptoms (r=-.662, p=.074). The results from this exploratory study suggest that a single ketamine treatment may modulate negative affective bias. Limitations to this study included the small sample size and lack of follow-up. Future larger trials are required to confirm this finding

    Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity

    Get PDF
    Nanomaterials have been the object of intense study due to promising applications in a number of different disciplines. In particular, medicine and biology have seen the potential of these novel materials with their nanoscale properties for use in diverse areas such as imaging, sensing and drug vectorisation. Gold nanoparticles (GNPs) are considered a very useful platform to create a valid and efficient drug delivery/carrier system due to their facile and well-studied synthesis, easy surface functionalization and biocompatibility. In the present study, stable antibiotic conjugated GNPs were synthesised by a one-step reaction using a poorly water soluble antibiotic, amoxicillin. Amoxicillin, a member of the penicillin family, reduces the chloroauric acid to form nanoparticles and at the same time coats them to afford the functionalised nanomaterial. A range of techniques including UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were used to ascertain the gold/drug molar ratio and the optimum temperature for synthesis of uniform monodisperse particles in the ca. 30-40 nm size range. Amoxicillin-conjugated gold showed an enhancement of antibacterial activity against Escherichia coli compared to the antibiotic alone
    • …
    corecore