175 research outputs found

    No insulin degludec dose adjustment required after aerobic exercise for people with type 1 diabetes: the ADREM study

    Get PDF
    Aims/hypothesis: It is generally recommended to reduce basal insulin doses after exercise to reduce the risk of post-exercise nocturnal hypoglycaemia. Based on its long t½, it is unknown whether such adjustments are required or beneficial for insulin degludec. Methods: The ADREM study (Adjustment of insulin Degludec to Reduce post-Exercise (nocturnal) hypoglycaeMia in people with diabetes) was a randomised controlled, crossover study in which we compared 40% dose reduction (D40), or postponement and 20% dose reduction (D20-P), with no dose adjustment (CON) in adults with type 1 diabetes at elevated risk of hypoglycaemia, who performed a 45 min aerobic exercise test in the afternoon. All participants wore blinded continuous glucose monitors for 6 days, measuring the incidence of (nocturnal) hypoglycaemia and subsequent glucose profiles. Results: We recruited 18 participants (six women, age 38 ± 13 years, HbA1c 56 ± 8 mmol/mol [7.3 ± 0.8%], mean ± SD). Time below range (i.e. glucose 10 mmol/l) was greater for D20-P vs CON (mean ± SEM, 584 ± 81 vs 364 ± 66 min, p=0.001) and D40 (385 ± 72 min, p=0.003). Conclusions/interpretation: Post-exercise adjustment of degludec does not mitigate the risk of subsequent nocturnal hypoglycaemia in people with type 1 diabetes. Although reducing degludec reduced next-day time below range, this did not translate into fewer hypoglycaemic events, while postponing degludec should be avoided because of increased time above range. Altogether, these data do not support degludec dose adjustment after a single exercise bout. Trial registration: EudraCT number 2019-004222-22 Funding: The study was funded by an unrestricted grant from Novo Nordisk, Denmark. Graphical abstract: [Figure not available: see fulltext.

    Sixteen-Week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less pro-inflammatory state.

    Get PDF
    Background Low-grade inflammation, largely mediated by monocyte-derived macrophages, contributes to atherosclerosis. Sedentary behavior is associated with atherosclerosis and cardiovascular diseases (CVD). We examined whether reducing sedentary behavior and improving walking time improves monocyte inflammatory phenotype in subjects with increased cardiovascular risk. Methods and Results Across 2 waves, 16 individuals with increased cardiovascular risk performed a 16-week intervention study (age 64±6 years, body mass index 29.9±4.3 kg/m2), using a device with vibration feedback to promote physical activity. Before and after intervention, we objectively examined physical activity (ActivPAL), cytokine production capacity after ex vivo stimulation in peripheral blood mononuclear cells, metabolism of peripheral blood mononuclear cells, circulating cytokine concentrations, and monocyte immunophenotype. Overall, no significant increase in walking time was found (1.9±0.7 to 2.2±1.2 h/day, P=0.07). However, strong, inverse correlations were observed between the change in walking time and the change in production of interleukin (IL)-1β, IL-6, IL-8, and IL-10 after lipopolysaccharide stimulation (rs=-0.655, -0.844, -0.672, and -0.781, respectively, all P<0.05). After intervention optimization based on feedback from wave 1, participants in wave 2 (n=8) showed an increase in walking time (2.2±0.8 to 3.0±1.3 h/day, P=0.001) and attenuated cytokine production of IL-6, IL-8, and IL-10 (all P<0.05). Glycolysis (P=0.08) and maximal OXPHOS (P=0.04) of peripheral blood mononuclear cells decreased after intervention. Lower IL-6 concentrations (P=0.06) and monocyte percentages (P<0.05), but no changes in monocyte subsets were found. Conclusions Successfully improving walking time shifts innate immune function towards a less proinflammatory state, characterized by a lower capacity to produce inflammatory cytokines, in individuals with increased cardiovascular risk

    The effect of acute exercise on glycogen synthesis rate in obese subjects studied by 13C MRS

    Get PDF
    In obesity, insulin-stimulated glucose uptake in skeletal muscle is decreased. We investigated whether the stimulatory effect of acute exercise on glucose uptake and subsequent glycogen synthesis was normal. The study was performed on 18 healthy volunteers, 9 obese (BMI = 32.6 ± 1.2 kg/m2, mean ± SEM) and 9 lean (BMI = 22.0 ± 0.9 kg/m2), matched for age and gender. All participants underwent a euglycemic hyperinsulinemic clamp, showing reduced glucose uptake in the obese group (P = 0.01), during which they performed a short intense local exercise (single-legged toe lifting). Dynamic glucose incorporation into glycogen in the gastrocnemius muscle before and after exercise was assessed by 13C magnetic resonance spectroscopy combined with infusion of [1-13C]glucose. Blood flow was measured to investigate its potential contribution to glucose uptake. Before exercise, glycogen synthesis rate tended to be lower in obese subjects compared with lean (78 ± 14 vs. 132 ± 24 μmol/kg muscle/min; P = 0.07). Exercise induced highly significant rises in glycogen synthesis rates in both groups, but the increase in obese subjects was reduced compared with lean (112 ± 15 vs. 186 ± 27 μmol/kg muscle/min; P = 0.03), although the relative increase was similar (184 ± 35 vs. 202 ± 51%; P = 0.78). After exercise, blood flow increased equally in both groups, without a temporal relationship with the rate of glycogen synthesis. In conclusion, this study shows a stimulatory effect of a short bout of acute exercise on insulin-induced glycogen synthesis rate that is reduced in absolute values but similar in percentages in obese subjects. These results suggest a shared pathway between insulin- and exercise-induced glucose uptake and subsequent glycogen synthesis

    Long‐term efficacy and safety of combined insulin and GLP‐1 therapy: evidence from the LEADER trial

    Get PDF
    AIM: Glucagon-like peptide-1 receptor agonist (GLP-1RA) and insulin combination therapy is an effective treatment option for type 2 diabetes, but long-term data are lacking. The aim was to assess the long-term efficacy of the GLP-1RA liraglutide in subgroups by insulin use in the LEADER trial. MATERIALS AND METHODS: LEADER assessed cardiovascular (CV) safety and efficacy of liraglutide (1.8 mg) versus placebo (plus standard of care therapy) in 9340 patients with type 2 diabetes and high risk of CV disease, for up to 5 years. We analyzed CV events, metabolic parameters and hypoglycaemia post hoc in three subgroups by baseline insulin use (basal-only insulin, other insulin or no insulin). Insulin was a non-random treatment allocation as part of standard of care therapy. RESULTS: At baseline, 5171 (55%) patients were not receiving insulin, 3159 (34%) were receiving basal-only insulin and 1010 (11%) other insulins. Insulin users had a longer diabetes duration and slightly worse glycaemic control (HbA1c) than the no-insulin subgroup. Liraglutide reduced HbA1c and weight versus placebo in all three subgroups (P < .001), and severe hypoglycaemia rate in the basal-only insulin subgroup. The need for insulin was less with liraglutide. CV risk reduction with liraglutide was similar to the main trial results in the basal-only and no-insulin subgroups. CONCLUSIONS: In patients on insulin, liraglutide improved glycaemic control, weight and need for insulin versus placebo, for at least 36 months with no increased risk of severe hypoglycaemia, while maintaining CV safety/efficacy, supporting the combination of liraglutide and insulin for management of type 2 diabetes

    Evaluation of the Birmingham IBS symptom questionnaire

    Get PDF
    Abstract Background Irritable Bowel Syndrome (IBS) is a chronic/common condition that causes a significant effect on the individual (reduced quality of life), society (time lost off work) and health services. Comparison of studies evaluating the management of IBS has been hindered by the lack of a widely adopted validated symptom score. The aim of this study was to develop and validate a disease specific score to measure the symptoms of patients with IBS. Methods A self-administered 14-item symptom questionnaire (based on Rome II criteria) was mailed to 533 persons included in a prevalence study of IBS. The reliability of each underlying dimension identified was measured by Cronbach's α. Validity was assessed by comparing symptom scores with concurrent IBS specific quality of life (QoL) scores. Reproducibility was measured by the test-retest method and responsiveness measured by effect size. Results 379 (71%) questionnaires were returned. The underlying dimensions identified were pain, diarrhoea and constipation. Cronbach's α was 0.74 for pain, 0.90 for diarrhoea and 0.79 for constipation. Pain and diarrhoea dimensions had good external validity (r = -0.3 to -0.6), constipation dimension had moderate external validity (r = -0.2 to -0.3). All dimensions were reproducible (ICCs 0.75 to 0.81). Effect sizes of 0.27 to 0.53 were calculated for those with a reported improvement in symptoms. Conclusion The Birmingham IBS Symptom Questionnaire has been developed and tested. It has been shown to be suitable for self-completion and acceptable to patients. The questionnaire has 3 internal dimensions which have good reliability, external validity and are responsive to a change in health status.</p

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore