557 research outputs found

    Nonlinear Relaxation in Population Dynamics

    Full text link
    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the i-th population and on the distribution of the population and of the local field.Comment: 11 pages, 4 figures, in press in Int. Journal of Fractals (2001

    Spatial correlations of vacuum fluctuations and the Casimir-Polder potential

    Full text link
    We calculate the Casimir-Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example when external boundaries or thermal fields are present.Comment: 7 page

    Theoretical analysis of the implementation of a quantum phase gate with neutral atoms on atom chips

    Full text link
    We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double--well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 ms with a performance fidelity above 99.9%. For storage of the state between the operations the qubit state can be transferred efficiently via Raman transitions to two hyperfine states, where its decoherence is strongly inhibited. In addition we discuss the limits imposed by the proximity of the surface to the gate fidelity.Comment: 9 pages, 5 color figure

    Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms

    Full text link
    The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.Comment: 17 pages, 1 figure, sub. to Phys. Rev.

    Casimir-Polder potentials as entanglement probe

    Full text link
    We have considered the interaction of a pair of spatially separated two-level atoms with the electromagnetic field in its vacuum state and we have analyzed the amount of entanglement induced between the two atoms by the non local field fluctuations. This has allowed us to characterize the quantum nature of the non local correlations of the electromagnetic field vacuum state as well as to link the induced quantum entanglement with Casimir-Polder potentials.Comment: Published on Europhysics Letters 78 (2007) 3000

    Time-dependent Casimir-Polder forces and partially dressed states

    Full text link
    A time-dependent Casimir-Polder force is shown to arise during the time evolution of a partially dressed two-level atom. The partially dressed atom is obtained by a rapid change of an atomic parameter such as its transition frequency, due to the action of some external agent. The electromagnetic field fluctuations around the atom, averaged over the solid angle for simplicity, are calculated as a function of time, and it is shown that the interaction energy with a second atom yields a dynamical Casimir-Polder potential between the two atoms
    corecore