392 research outputs found

    Micro-Scale Catalytic Reactor for Syngas Production

    Get PDF
    This paper presents both experimental and modeling investigations of a catalytic wall fuel processor consisting of coupled methane reforming and methane combustion sections. The reacting systems are both catalytic and the latter generates the heat required for the occurrence of the former. The catalytic wall reactor was examined for light-off behavior and for steady-state product distribution. On one hand, the analysis of the reaction products distribution after catalyst ignition indicated that in both combustion and reforming sections catalysts undergo to a relatively long transient (about 40 min) before reaching steady state conditions. On the other hand, a much longer reactor thermal transient was observed and the two transient behaviors appear independent of each other. Analysis of the reactor operating under real conditions (nonadiabatic) showed that a 3D model is needed to accurately predict the reactor performance because a 2D model, although much more convenient, cannot allow for the whole heat loss thereby yielding unreliable results

    Modelling of a Catalytic Micro-Reactor Coupling Endothermic Methane Reforming and Combustion

    Get PDF
    In this study the mathematical modelling of a catalytic microstructured plate reactor for the production of hydrogen was performed in 2D and 3D geometry. The proposed reacting system uses the heat generated by an exothermic reaction (combustion) to sustain endothermic reforming reactions. Therefore, it pertains to those devices useful for producing the feed for fuel cell system for the remote generation of electrical power. However, because of the compactness of the reacting system it can also be considered in the context of apparatus aiming at process intensification. Within this frame the catalytic contribution of both exothermic and endothermic reactions was modeled considering the classic Langmuir- Hinshelwood surface kinetic theory. The advantage of using a real 3D geometry configuration consists in the possibility of considering the importance of the entering and boundary effects with particular attention to fluid stagnation and heat hot spots. The trade off of such a choice is certainly the huge increase of computing time and/or of the power of the computing facility. With respect to other works performed with similar reactor geometry and reacting systems this does not use simplifying assumptions such as catalyst layers modeled by one-dimensional approach, fully developed laminar flow or transverse heat and mass transfer taken into account through lumped heat and mass transfer coefficients. Results of simulations presented here concentrates on the comparisons between results of: countercurrent (CTC) and concurrent (CNC) flow patterns of the reactant streams; of simulations carried out with 2D and 3D models and of the influence of the thickness of the catalytic layers on the reactor performance. Simulations indicates that CNC flow pattern of reactants streams allows a better performance of the reactor since positive temperature differences between the catalyst layers and the gas in the channels maintain along the whole reactor and, consequently, there are not heat flux inversions, which occur under CTC flow pattern. Results also showed that as concerns an adiabatic reactor, whatever the operating conditions, 2D and 3D models yield substantially the same results. Finally, modelling demonstrated that for a realistic catalyst layer configuration thicknesses larger than 50 _m are useless for enhancing the reactor performance. The feasibility of the model proposed may show its potential in fast and easy implementation of several combustion and reforming fuels so to significantly enhance the performance prediction of real processes

    Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses

    Get PDF
    In this work, the results of gas phase cyclohexane photocatalytic oxidative dehydrogenation on MoOx/SO4/TiO2 catalysts with DRIFTS analysis are presented. Analysis of products in the gas-phase discharge of a fixed bed photoreactor was coupled with in situ monitoring of the photocatalyst surface during irradiation with an IR probe. An interaction between cyclohexane and surface sulfates was found by DRIFTS analysis in the absence of UV irradiation, showing evidence of the formation of an organo-sulfur compound. In particular, in the absence of irradiation, sulfate species initiate a redox reaction through hydrogen abstraction of cyclohexane and formation of sulfate (IV) species. In previous studies, it was concluded that reduction of the sulfate (IV) species via hydrogen abstraction during UV irradiation may produce gas phase SO2 and thereby loss of surface sulfur species. Gas phase analysis showed that the presence of MoOx species, at same sulfate loading, changes the selectivity of the photoreaction, promoting the formation of benzene. The amount of surface sulfate influenced benzene yield, which decreases when the sulfate coverage is lower. During irradiation, a strong deactivation was observed due to the poisoning of the surface by carbon deposits strongly adsorbed on catalyst surface
    corecore