6,170 research outputs found

    Hydrogen sulfide ameliorates isoflurane-induced cognitive impairment in mice: Implication of caspase-3 activation

    Get PDF
    Purpose: Isoflurane could induce cognitive impairment and activate caspase-3. However, the mechanism of action is unclear and target  interventions are unavailable. The present study examined the potential protective function of hydrogen sulfide (H2S) against isoflurane-induced cognitive impairment.Methods: Effects of NaHS (5 mg/kg) on cognitive impairment induced by isoflurane (1.4% for 2 h) were assessed using a fear-conditioning test in a group of 8-month old mice. H4 human neuroglioma cells, which were transfected with upregulated human amyloid precursor protein were treated for 3 or 6 h with 2% isoflurane, in the presence of 100-μM NaHS in the mice. A group of mice treated with normal saline in place of the NaHS in each case served as control. Western blotting, fluorescence assay, and a mitochondrial swelling assay were employed to observe the results of caspase-3 activation, mitochondrial dysfunction, and ROS and ATP levels.Results: NaHS significantly mitigated isoflurane-induced cognitive impairment in mice. In cultured cells, NaHS reduced caspase-3 activation, ROS, mitochondria membrane reduction, mitochondrial permeability transition pore opening, and cellular ATP level. NaHS could ameliorate cognitiveimpariment induced by isoflurane through inhibiting caspase-3 activation, oxidative stress, and mitochondrial dysfunction.Conclusion: These results indicate that hydrogen sulfide (H2S) has potential protective function against isoflurane-induced cognitive impairment. Further investigation of NaHS as an intervention to attenuate anesthesia-associated neurotoxicity is vital. Keywords: Hydrogen sulfide, isoflurane-cognition,fear conditioning,neurotoxicit

    Far-Field Tunable Nano-focusing Based on Metallic Slits Surrounded with Nonlinear-Variant Widths and Linear-Variant Depths of Circular Dielectric Grating

    Full text link
    In this work, we design a new tunable nanofocusing lens by the linear-variant depths and nonlinear-variant widths of circular grating for far field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, and the focal length of the this structures can be adjusted if the each groove depth and width of circular grating are arranged in traced profile. According to the numerical calculation, the range of focusing points shift is much more than other plasmonic lens, and the relative phase of emitting light scattered by surface plasmon coupling circular grating can be modulated by the nonlinear-variant width and linear-variant depth. The simulation result indicates that the different relative phase of emitting light lead to variant focal length. We firstly show a unique phenomenon for the linear-variant depths and nonlinear-variant widths of circular grating that the positive change and negative change of the depths and widths of grooves can result in different of variation trend between relative phases and focal lengths. These results paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical trapping, and sensing.Comment: 14pages,9figure

    Characterization of CoTiO3 Nanocrystallites Prepared by Homogeneous Precipitation Method

    Get PDF
    Nanocrystalline cobalt titanate (CoTiO3) has been synthesized from a well-mixed precursor. The precursor was prepared by a homogeneous precipitation method, in which urea was used as the precipitator. The as-synthesized sample is a mixture of CoTiO3 and rutile nanocrystallites with mean sizes of around 50 nm. It strongly absorbs visible light in the wavelength range of 500-690 nm besides ultraviolet light (wavelength < 370 nm). We found the synthetic CoTiO3 is a semiconducting material with a direct band gap of 2.53 eV. The green CoTiO3 has two absorbance peaks at the wavelengths of 537 and 606 nm, which correspond to the photon energies of 2.31 and 2.05 eV, respectively. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3195
    corecore