104 research outputs found

    Fast interactive CFD evaluation of hemodynamics assisted by RBF mesh morphing and reduced order models: the case of aTAA modelling

    Get PDF
    AbstractThe medical digital twin is emerging as a viable opportunity to provide patient-specific information useful for treatment, prevention and surgical planning. A bottleneck toward its effective use when computational fluid dynamics (CFD) techniques and tools are adopted for the high fidelity prediction of blood flow, is the significant computing cost required. Reduced order models (ROM) looks to be a promising solution for facing the aforementioned limit. In fact, once ROM data processing is accomplished, the consumption stage can be performed outside the computer-aided engineering software adopted for simulation and, in addition, it could be also implemented on interactive software visualization interfaces that are commonly employed in the medical context. In this paper we demonstrate the soundness of such a concept by numerically investigating the effect of the bulge shape for the ascending thoracic aorta aneurysm case. Radial basis functions (RBF) based mesh morphing enables the implementation of a parametric shape, which is used to build up the ROM framework and data. The final result is an inspection tool capable to visualize, interactively and almost in real-time, the effect of shape parameters on the entire flow field. The approach is first verified considering a morphing action representing the progression from an average healthy patient to an average aneurismatic one (Capellini et al. in Proceedings VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017), 2017; Capellini et al. in J. Biomech. Eng. 140(11):111007-1–111007-10, 2018). Then, a set of shape parameters, suitable to consistently represent a widespread number of possible bulge configurations, are defined and accordingly generated. The concept is showcased taking into account the steady flow field at systolic peak conditions, using ANSYS®Fluent®and its ROM environment for CFD and ROM calculations respectively, and the RBF MorphTM software for shape parametrization

    A novel valveless pulsatile flow pump for extracorporeal blood circulation

    Get PDF
    ProducciĂłn CientĂ­ficaExtracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed. A VV-ECMO circuit with the integrated Liebau pump has been incorporated to analyse its performance. The Liebau pump in the ECMO circuit showed a flow assistance in the range of paediatric ECMO and low blood flow range for adults. In addition, Experimental test conducted demonstrated the advantage of the Liebau pump over currently used pumps as the ability to generate a pulsatile flow, which has many advantages in biomedical applications

    The A2B adenosine receptor modulates the epithelial- mesenchymal transition through the balance of cAMP/PKA and MAPK/ERK pathway activation in human epithelial lung cells

    Get PDF
    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2Badenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies

    Effects of uncertainties of image-based material properties of great vessels on vascular deformation

    Get PDF
    Patient-specific computational models represent a powerful tool for the planning of cardiovascular interventions. In this context, the patient-specific material properties are considered as one of the biggest source of uncertainty. In this work, we investigated the effect of the uncertainty of the elastic module (E), as computed from a recent image-based methodology, on a fluid-structure interaction (FSI) model of a patientspecific aorta. The Uncertainty Quantification (UQ) was carried out using the generalized Polynomial Chaos (gPC) method. Four deterministic simulations were run based on the four quadrature points, computed considering a deviation of ±20% on the estimation of the E value of the vessel wall from patient's imaging. The UQ of the E parameter was evaluated on the area and flow variations among cardiac cycle extracted from five cross-sections of the aortic FSI model. Results from gPC analysis showed a not significant variation of the area and flow quantities during the whole cardiac period, thus demonstrating the effectiveness of the used image-based methodology in the inferring of the E parameter, despite its intrinsic errors due to model definition. This study highlights the importance of imaging to retrieve useful data in an indirect and noninvasive way, to enhance the reliability of in-silico models in the clinical practice

    Hemodynamics in healthy and pathological thoracic aorta: integration of in-vivo data in CFD simulations and in in-vitro experiments

    Get PDF
    A comparison between the results of the CFD simulations and the in-vitro experiments carried out on a circulatory mock loop is presented. Both approaches integrate in-vivo measurements obtained from a patient-specific clinical data set. Three thoracic-aorta geometries are analyzed: a healthy aorta, an aneurysmatic aorta, and a coarctated aorta. The healthy geometry is obtained from Magnetic Resonance Imaging (MRI) acquisitions, together with the patient-specific flow-rate waveform, whereas the diseased ones are derived from the former geometry by locally morphing the vessel's wall. The open-source code Simvascular is used for simulations. The in-vitro results are measured in a fully controlled and sensorized circulatory mock loop for 3D-printed aortic models. Differently from in-vivo acquisitions, the experimental set-up eliminates some of the uncontrollable uncertainties that characterize MRI data. Indeed, perfect control of the flow rate and full knowledge of the wall model characteristics (rigid walls in the present case) is allowed in experiments and, thus, clear indications can be obtained to validate and improve the accuracy of numerical models. The numerical and experimental results are in good agreements for the three analyzed geometries and the flow-rate conditions. In-vivo data from the healthy case are in a satisfactory agreement with numerical/in-vitro results, and they can be ascribed to possible differences between MRI and numerical/in-vitro set-ups. The velocity fields obtained through CFD are consistent with the echographic results in in-vitro experiments, showing the same flow patterns in healthy and pathological cases

    A New Web Score to Predict Health Status in Paediatric Patients with Chronic Diseases: Design and Development of the PENSAMI Study

    Get PDF
    Paediatric chronic diseases (CD) are characterised by their ongoing duration and the fact that they are often managed throughout the lifespan, with the need to adjust lifestyle and expectations with the limitations coming from the CD. The aim of the PENSAMI study is to not only cure the disease, but to also care for the person from a clinical and psychosocial perspective. Data will be collected from 150 paediatric patients affected by heart disease, diabetes, and asthma admitted during in-hospital stay or outpatient visits, and from 200 healthy control subjects. The protocol will consist of two phases. The first one will aim at elaborating the predictive model by detecting (clinical, anthropometric at birth, environmental, lifestyle, social context, emotional state, and mental abilities) in order to develop a model predictive of the events considered: (1) re-hospitalisation; (2) severity and progression of the disease; (3) adherence to therapy; (4) HRQoL; (5) obesity and metabolic syndrome; (6) illness-stress related; (7) school drop-out; (8) school performance. The second one will address validating the previous predictive model. This model will aim to: (1) understand, prevent, and halt the progression of childhood CD; (2) develop new and improved diagnostic tools; (3) pave the way for innovative treatments and additional therapies to traditional clinical practice; and (4) create truly personalised therapeutic and preventive strategies in various sectors, such as cardiology, diabetes, and respiratory diseases
    • …
    corecore