2,290 research outputs found

    Quantifying the influence of Bessel beams on image quality in optical coherence tomography

    Get PDF
    Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and experimental OCT images formed by Bessel or Gaussian beams illuminating phantoms with optical properties spanning a range typical of soft tissue. We demonstrate that, for a given scattering parameter, the higher the scattering anisotropy the lower the OCT contrast, regardless of the beam type. When focusing both beams at the same depth in the sample, we show that, at focus and for equal input power and resolution, imaging with the Gaussian beam suffers less reduction of contrast. This suggests that, whilst Bessel beams offer extended depth of field in a single depth scan, for low numerical aperture (NA  0.95), superior contrast (by up to ~40%) may be obtained over an extended depth range by a Gaussian beam combined with dynamic focusing

    Screening disability insurance applications

    Get PDF
    This paper investigates the effects of stricter screening of disability insurance applications. A large-scale experiment was setup where in two of the 26 Dutch regions case workers of the disability insurance administration were instructed to screen applications more stringently. The empirical results show that stricter screening reduces long-term sickness absenteeism and disability insurance applications. We find evidence for direct effects of stricter screening on work resumption during the period of sickness absence and for self-screening by potential disability insurance applicants. Stricter screening seems to improve targeting efficiency, without inducing negative spillover effects to the inflow into unemployment insurance. The costs of stricter screening are only a small fraction of the monetary benefits.Disability insurance; experiment; policy evaluation; sickness absenteeism; self-screening

    Image-guided Raman spectroscopy probe-tracking for tumor margin delineation

    Get PDF
    SIGNIFICANCE: Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application. AIM: We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins. APPROACH: We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation. RESULTS: Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model. CONCLUSIONS: Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries

    Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic neuropathy is a common neuropathy associated with paresthaesia and pain. The mechanisms underlying the painful conditions are not well understood. The aim of this study is to investigate the participation of purinergic P2X3 receptors in painful diabetic neuropathy.</p> <p>Results</p> <p>Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ). We showed that mechanical allodynia was induced two weeks after a STZ injection and lasted for at least another seven weeks. The mechanical allodynia was significantly attenuated by peripheral administration of the P2X receptor antagonists, PPADS or TNP-ATP. DiI was subcutaneously injected into the rat hindpaw to label hindpaw-innervated dorsal root ganglion (DRG) neurons. ATP activated fast-inactivating P2X3 receptor-mediated currents in the labeled DRG neurons were studied. ATP responses in STZ-treated rats were ~2-fold larger than those in control rats. Furthermore, the expression of P2X3 receptor proteins in the plasma membrane of L4-6 DRGs of STZ rats was significantly enhanced while the total expression of P2X3 receptors remained unaltered.</p> <p>Conclusions</p> <p>These results indicate that a large enhancement of P2X3 receptor activity and an increase in the membrane expression of P2X3 receptors contribute to the development of chronic pain in STZ-induced diabetic rats and suggest a possible target for the treatment of diabetic neuropathic pain.</p

    Yin and Yang: CCN3 inhibits the pro-fibrotic effects of CCN2

    Get PDF
    Fibrotic disease is a significant cause of mortality. CCN2 (connective tissue growth factor [CTGF]), a member of the CCN family of matricellular proteins, plays a significant role in driving the fibrogenic effects of cytokines such as transforming growth factor β (TGFβ). It has been proposed that other members of the CCN family can either promote or antagonize the action of CCN2, depending on the context. A recent elegant study published by Bruce Riser and colleagues (Am J Pathol. 174:1725–34, 2009) illustrates that CCN3 (nov) antagonizes the fibrogenic effects of CCN2. This paper, the subject of this commentary, raises the intriguing possibility that CCN3 may be used as a novel anti-fibrotic therapy

    Semiconductor nanostructure quantum ratchet for high efficiency solar cells

    Full text link
    Conventional solar cell efficiencies are capped by the ~31% Shockley–Queisser limit because, even with an optimally chosen bandgap, some red photons will go unabsorbed and the excess energy of the blue photons is wasted as heat. Here we demonstrate a “quantum ratchet” device that avoids this limitation by inserting a pair of linked states that form a metastable photoelectron trap in the bandgap. It is designed both to reduce non-radiative recombination, and to break the Shockley–Queisser limit by introducing an additional “sequential two photon absorption” (STPA) excitation channel across the bandgap. We realise the quantum ratchet concept with a semiconductor nanostructure. It raises the electron lifetime in the metastable trap by ~104, and gives a STPA channel that increases the photocurrent by a factor of ~50%. This result illustrates a new paradigm for designing ultra-efficient photovoltaic devices

    Visual ecology of aphids – a critical review on the role of colours in host finding

    Get PDF
    We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring

    Galaxy And Mass Assembly (GAMA): the wavelength dependence of galaxy structure versus redshift and luminosity

    Get PDF
    We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting Sersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, R\mathcal{R}, of measurements in two restframe bands. The dependence of Sersic index on wavelength, N\mathcal{N}, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of R\mathcal{R} and N\mathcal{N}. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in Sersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy populations. However, our conclusions remain robust to this effect. We show that accounting for different redshift and luminosity selections partly reconciles the size variation measured by Vulcani et al. with the weaker trends found by other recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although the sample size is greatly reduced. Finally, we demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of R\mathcal{R} and N\mathcal{N} for late-type galaxies. However, dust does not appear to explain the highest values of R\mathcal{R} and N\mathcal{N}. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure
    corecore