120 research outputs found

    Cerebral venous outflow and cerebrospinal fluid dynamics

    Get PDF
    In this review, the impact of restricted cere- bral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF) pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorp- tion of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constrict- ed venous outflow appears to be linked with increased aqueductal CSF pulsatility, it sug- gests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins

    A CUSUM tool for retrospectively evaluating team performance: the case of the English Premier League

    Get PDF
    Purpose Despite being a widely used management technique, cumulative sum (CUSUM) analysis remains almost unheard of in professional sport. To address this, CUSUM analysis of soccer match data from the English Premier League (EPL) was performed. The primary objective of the study was to evaluate CUSUM as a tool for assessing ‘on-field’ team performance. As a secondary objective, the association between managerial change and team performance was evaluated. Design/methodology/approach CUSUM was applied retrospectively to goal difference data for six EPL teams (Arsenal, Chelsea, Everton, Liverpool, Manchester United, and Tottenham) over 23 consecutive seasons from 1995-2018. This was supplemented with change point analysis to identify structural changes in mean goal difference. Succession was evaluated by mapping historical managerial changes onto the CUSUM plots for the respective clubs. Findings CUSUM analysis revealed the presence of structural changes in four clubs. Two structural change points were identified for both Chelsea and Everton, one for Manchester United and Tottenham, and none for Arsenal and Liverpool. Relatively few managerial changes coincided temporally with structural changes in ‘on-field’ performance, with most appointments having minimal impact on long-term team performance. Other factors (e.g. changes in ownership) appear to have been influential. Research limitations/implications The study was limited by the fact that only successful teams were investigated. Practical implications CUSUM analysis appears to have potential as a tool for executive decision-makers to evaluate performance outcomes in professional soccer. Originality/value The study is the first of its kind to use CUSUM analysis to evaluate team performance in professional soccer

    Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: a feasibility study

    Get PDF
    As the world’s economies come out of the lockdown imposed by the COVID-19 pandemic, there is an urgent need for technologies to mitigate COVID-19 transmission in confined spaces such as buildings. This feasibility study looks at one such technology, upper-room ultraviolet (UV) air disinfection, that can be safely used while humans are present in the room space, and which has already proven its efficacy as an intervention to inhibit the transmission of airborne diseases such as measles and tuberculosis. Using published data from various sources, it is shown that the SARS-CoV-2 virus, the causative agent of COVID-19, is highly likely to be susceptible to UV-C damage when suspended in air, with a UV susceptibility constant likely to be in the region 0.377–0.590 m2/J, similar to that for other aerosolised coronaviruses. As such, the UV-C flux required to disinfect the virus is expected to be acceptable and safe for upper-room applications. Through analysis of expected and worst-case scenarios, the efficacy of the upper-room UV-C approach for reducing COVID-19 transmission in confined spaces (with moderate but sufficient ceiling height) is demonstrated. Furthermore, it is shown that with SARS-CoV-2, it should be possible to achieve high equivalent air change rates using upper-room UV air disinfection, suggesting that the technology might be particularly applicable to poorly ventilated spaces

    Modelling the air cleaning performance of negative air ionisers in ventilated rooms

    Get PDF
    Negative air ionisers have seen increasing use as devices for improving indoor air quality, including some success in clinical environments for reducing the transmission of infection. This study uses a ventilation model and a CFD model to examine the physical effects of negative ionisers in indoor environments. The results demonstrate how the negative ion distribution and electric field due to an ioniser are influenced by both the room airflow and the ion generation rate. It is shown that ion concentrations greater than 1010 ions/m3 are necessary for the electrical effects to be significant. The effect on particles is also considered, with the results demonstrating that the ioniser will only increase the deposition of particles when the particle concentration is high enough to contribute to the space charge in the room

    Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses.

    Get PDF
    BACKGROUND: In this paper we use multivariate statistical techniques to gain insights into how adaptive gait involving obstacle crossing is regulated in lower-limb amputees compared to able-bodied controls, with the aim of identifying underlying characteristics that differ between the two groups and consequently highlighting gait deficits in the amputees. METHODS: Eight unilateral trans-tibial amputees and twelve able-bodied controls completed adaptive gait trials involving negotiating various height obstacles; with amputees leading with their prosthetic limb. Spatiotemporal variables that are regularly used to quantify how gait is adapted when crossing obstacles were determined and subsequently analysed using multivariate statistical techniques. RESULTS AND DISCUSSION: There were fundamental differences in the adaptive gait between the two groups. Compared to controls, amputees had a reduced approach velocity, reduced foot placement distance before and after the obstacle and reduced foot clearance over it, and reduced lead-limb knee flexion during the step following crossing. Logistic regression analysis highlighted the variables that best distinguished between the gait of the two groups and multiple regression analysis (with approach velocity as a controlling factor) helped identify what gait adaptations were driving the differences seen in these variables. Getting closer to the obstacle before crossing it appeared to be a strategy to ensure the heel of the lead-limb foot passed over the obstacle prior to the foot being lowered to the ground. Despite adopting such a heel clearance strategy, the lead-foot was positioned closer to the obstacle following crossing, which was likely a result of a desire to attain a limb/foot angle and orientation at instant of landing that minimised loads on the residuum (as evidenced by the reduced lead-limb knee flexion during the step following crossing). These changes in foot placement meant the foot was in a different part of swing at point of crossing and this explains why foot clearance was considerably reduced in amputees. CONCLUSIONS: These results highlight that trans-tibial amputees use quite different gait adaptations to cross obstacles compared with controls (at least when leading with their prosthetic limb), indicating they are governed by different constraints; seemingly related to how they land on/load their prosthesis after crossing the obstacle

    A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols

    Get PDF
    There is increasing evidence that the 2020 COVID-19 pandemic has been influenced by variations in air temperature and humidity. However, the impact that these environmental parameters have on survival of the SARS-CoV-2 virus has not been fully characterised. Therefore, an analytical study was undertaken using published data to develop a psychrometric model to assess the biological decay rate of the virus in aerosols. This revealed that it is possible to describe with reasonable accuracy (R2 = 0.718, p < 0.001) the biological decay constant for the SARS-CoV-2 virus using a regression model with enthalpy, vapour pressure and specific volume as predictors. Applying this to historical meteorological data from London, Paris and Milan over the pandemic period, produced results which indicate that the average half-life of the virus in aerosols outdoors was in the region 13-22 times longer in March 2020, when the outbreak was accelerating, than it was in August 2020 when epidemic in Europe was at its nadir. However, indoors, this variation is likely to be much less. As such, this suggests that changes in virus survivability due the variations in the psychrometric qualities of the air might influence the transmission of SARS-CoV-2

    Importance of physical qualities for speed and change of direction ability in elite female soccer players.

    Get PDF
    The purpose of this study was to determine the importance of physical qualities for speed and change of direction (CoD) ability in female soccer players. Data were collected on 10 female soccer players who were part of a professional English Women’s Super League team. Player assessments included anthropometric (stature and body mass), body composition (dual-energy X-ray absorptiometry), speed (10m, 30m sprint), CoD ability (505 agility), aerobic (Yo-Yo Intermittent Recovery Test), lower-body strength (bilateral knee extensions) and power (countermovement jump [CMJ], squat jump [SJ], 30cm drop jump [DJ]) measures). The relationships between the variables were evaluated using eigenvector analysis and Pearson correlation analysis. Multiple linear regression revealed that the performance variables (10 and 20m speed, mean 505, and CoD deficit mean) can be predicted with almost 100% accuracy (i.e. adjusted R2 > 0.999) using various combinations of the predictor variables (DJ height, CMJ height, SJ height, lean body mass). An increase of one standard deviation (SD) in DJ height was associated with reductions of -5.636 and 9.082 SD in 10 m and 20 m sprint times. A one SD increase in CMJ also results in a reduction of -3.317 and -0.922 SD respectively in mean 505 and CoD deficit mean values. This study provides comparative data for professional English female soccer players that can be used by strength and conditioning coaches when monitoring player development and assessing the effectiveness of training programmes. Findings highlight the importance of developing reactive strength to improve speed and CoD ability in female soccer players

    The use of kurtosis de-noising for EEG analysis of patients suffering from Alzheimer's disease.

    Get PDF
    The use of electroencephalograms (EEGs) to diagnose and analyses Alzheimer’s disease (AD) has received much attention in recent years. The sample entropy (SE) has been widely applied to the diagnosis of AD. In our study, nine EEGs from 21 scalp electrodes in 3 AD patients and 9 EEGs from 3 age-matched controls are recorded. The calculations show that the kurtoses of the AD patients’ EEG are positive and much higher than that of the controls. This finding encourages us to introduce a kurtosis-based de-noising method. The 21-electrode EEG is first decomposed using independent component analysis (ICA), and second sort them using their kurtoses in ascending order. Finally, the subspace of EEG signal using back projection of only the last five components is reconstructed. SE will be calculated after the above de-noising preprocess. The classifications show that this method can significantly improve the accuracy of SE-based diagnosis. The kurtosis analysis of EEG may contribute to increasing the understanding of brain dysfunction in AD in a statistical way
    • …
    corecore