203 research outputs found
Quintessence or Phoenix?
We show that it is impossible to determine the state equation of quintessence
models on the basis of pure observational SNIa data. An independent estimate of
is necessary. Also in this most favourable case the situation can
be problematic.Comment: 7 pages, 4 figures - [email protected]
Testing an exact -gravity model at Galactic and local scales
The weak field limit for a pointlike source of a -gravity model is studied. We aim to show the viability of such a model
as a valid alternative to GR + dark matter at Galactic and local scales.
Without considering dark matter, within the weak field approximation, we find
general exact solutions for gravity with standard matter, and apply them to
some astrophysical scales, recovering the consistency of the same
-gravity model with cosmological results.}{In particular, we show that it
is possible to obtain flat rotation curves for galaxies, [and consistency with]
Solar System tests, as in the so-called "Chameleon Approach". In fact, the
peripheral velocity is shown to be expressed as , so that the Tully-Fisher relation is recovered. The results
point out the possibility of achieving alternative theories of gravity in which
exotic ingredients like dark matter and dark energy are not necessary, while
their coarse-grained astrophysical and cosmological effects can be related to a
geometric origin.Comment: 8 pages, 2 figures, accepted in Astron. & Astrop
Testing a quintessence model with CMBR peaks location
We show that a model of quintessence with exponential potential, which allows
to obtain general exact solutions, can generate locations of CMBR peaks which
are fully compatible with present observational dataComment: 7 pages, no figure
Improved Action Functionals in Non-Perturbative Quantum Gravity
Models of gravity with variable G and Lambda have acquired greater relevance
after the recent evidence in favour of the Einstein theory being
non-perturbatively renormalizable in the Weinberg sense. The present paper
builds a modified Arnowitt-Deser-Misner (ADM) action functional for such models
which leads to a power-law growth of the scale factor for pure gravity and for
a massless phi**4 theory in a Universe with Robertson-Walker symmetry, in
agreement with the recently developed fixed-point cosmology. Interestingly, the
renormalization-group flow at the fixed point is found to be compatible with a
Lagrangian description of the running quantities G and Lambda.Comment: Latex file. Record without file already exists on SLAC-SPIRES, and
hence that record and the one for the present arxiv submission should become
one record onl
Exact -cosmological model coming from the request of the existence of a Noether symmetry
We present an -cosmological model with an exact analytic solution,
coming from the request of the existence of a Noether symmetry, which is able
to describe a dust-dominated decelerated phase before the current accelerated
phase of the universe.Comment: 4 pages, 2 figures, Contribution to the proceedings of Spanish
Relativity Meeting 2008, Salamanca, Sapin, 15-19 September 200
Coupling parameters and the form of the potential via Noether symmetry
We explore the conditions for the existence of Noether symmetries in the
dynamics of FRW metric, non minimally coupled with a scalar field, in the most
general situation, and with nonzero spatial curvature. When such symmetries are
present we find general exact solution for the Einstein equations. We also show
that non Noether symmetries can be found.
Finally,we present an extension of the procedure to the Kantowski- Sachs
metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure
Noether symmetry approach in phantom quintessence cosmology
In the framework of phantom quintessence cosmology, we use the Noether
Symmetry Approach to obtain general exact solutions for the cosmological
equations. This result is achieved by the quintessential (phantom) potential
determined by the existence of the symmetry itself. A comparison between the
theoretical model and observations is worked out. In particular, we use type Ia
supernovae and large scale structure parameters determined from the 2-degree
Field Galaxy Redshift Survey (2dFGRS)and from the Wide part of the VIMOS-VLT
Deep Survey (VVDS). It turns out that the model is compatible with the
presently available observational data. Moreover we extend the approach to
include radiation. We show that it is compatible with data derived from
recombination and it seems that quintessence do not affect nucleosynthesis
results.Comment: 26 pages, 13 figure
Quintessence duality
We join quintessence cosmological scenarios with the duality simmetry
existing in string dilaton cosmologies. Actually, we consider the tracker
potential type and show that duality is only
established if .Comment: 6 LaTex Pages, submitted to Physics Letters A; completely revised
version: majior changes in the last par
On exact solutions for quintessential (inflationary) cosmological models with exponential potentials
We first study dark energy models with a minimally-coupled scalar field and
exponential potentials, admitting exact solutions for the cosmological
equations: actually, it turns out that for this class of potentials the
Einstein field equations exhibit alternative Lagrangians, and are completely
integrable and separable (i.e. it is possible to integrate the system
analytically, at least by quadratures). We analyze such solutions, especially
discussing when they are compatible with a late time quintessential expansion
of the universe. As a further issue, we discuss how such quintessential scalar
fields can be connected to the inflationary phase, building up, for this class
of potentials, a quintessential inflationary scenario: actually, it turns out
that the transition from inflation toward late-time exponential quintessential
tail admits a kination period, which is an indispensable ingredient of this
kind of theoretical models. All such considerations have also been done by
including radiation into the model.Comment: Revtex4, 10 figure
Spherically symmetric ADM gravity with variable G and Lambda(c)
This paper investigates the Arnowitt--Deser--Misner (hereafter ADM) form of
spherically symmetric gravity with variable Newton parameter G and cosmological
term Lambda(c). The Newton parameter is here treated as a dynamical variable,
rather than being merely an external parameter as in previous work on closely
related topics. The resulting Hamilton equations are obtained; interestingly, a
static solution exists, that reduces to Schwarzschild geometry in the limit of
constant G, describing a Newton parameter ruled by a nonlinear differential
equation in the radial variable r. A remarkable limiting case is the one for
which the Newton parameter obeys an almost linear growth law at large r. An
exact solution for G as a function of r is also obtained in the case of
vanishing cosmological constant. Some observational implications of these
solutions are obtained and briefly discussed.Comment: 16 pages, 2 figures. The presentation has been improved in all
section
- …
