30 research outputs found

    A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration

    Get PDF
    Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism

    Invertebrate neuroethology: food play and sex.

    Get PDF
    How do animals perceive their environment and make appropriate behavioral choices based on those perceptions? New data have uncovered a novel sensory pathway that promotes Drosophila male courtship behavior in response to food

    Neuronal death in Drosophila triggered by GAL4 accumulation.

    Get PDF
    The GAL4/UAS system has been extensively employed in Drosophila to control gene expression in defined spatial patterns. More recently this system has been successfully applied to express genes involved in neurodegeneration to model various diseases in the fruit fly. We used transgenic lines expressing different levels of GAL4 in a particular subset of neurons involved in the control of rhythmic behaviour, so that its impact on neuronal physiology would result in altered locomotor activity, which could be readily assessed. We observed a striking correlation between gal4 dosage and behavioural defects associated with apoptotic neuronal loss in the specific GAL4-expressing neurons. Increased gal4 dosage correlated with accumulation of insoluble GAL4, suggesting that the cascade of events leading to apoptosis might be triggered by protein deposits of either GAL4 or protein intermediates. Behavioural defects were rescued by expression of hsp70, a classic chaperone that also interferes with cell death pathways. In agreement with the latter, the viral caspase inhibitor p35 also rescued GAL4-induced behavioural defects. Our observations demonstrate the intrinsic effects of GAL4 deregulation on neuronal viability and suggest that an excess of GAL4 might enhance neuronal deficits observed in models of neurodegeneration

    Invertebrate neuroethology: food play and sex.

    Get PDF
    How do animals perceive their environment and make appropriate behavioral choices based on those perceptions? New data have uncovered a novel sensory pathway that promotes Drosophila male courtship behavior in response to food.

    ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    No full text
    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration

    Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in drosophila

    No full text
    Mating elicits profound behavioral and physiological changes in many species that are crucial for reproductive success. After copulation, Drosophila melanogaster females reduce their sexual receptivity and increase egg laying [1, 2]. Transfer of male sex peptide (SP) during copulation mediates these postmating responses [1, 3-6] via SP sensory neurons in the uterus defined by coexpression of the proprioceptive neuronal marker pickpocket (ppk) and the sex-determination genes doublesex (dsx) and fruitless (fru) [7-9]. Although neurons expressing dsx downstream of SP signaling have been shown to regulate postmating behaviors [9], how the female nervous system coordinates the change from pre- to postcopulatory states is unknown. Here, we show a role of the neuromodulator octopamine (OA) in the female postmating response. Lack of OA disrupts postmating responses in mated females, while increase of OA induces postmating responses in virgin females. Using a novel dsxFLP allele, we uncovered dsx neuronal elements associated with OA signaling involved in modulation of postmating responses. We identified a small subset of sexually dimorphic OA/dsx+ neurons (approximately nine cells in females) in the abdominal ganglion. Our results are consistent with a model whereby OA neuronal signaling increases after copulation, which in turn modulates changes in female behavior and physiology in response to reproductive state

    ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    No full text
    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration

    Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila

    No full text
    Mating elicits profound behavioral and physiological changes in many species that are crucial for reproductive success. After copulation, Drosophila melanogaster females reduce their sexual receptivity and increase egg laying [1, 2]. Transfer of male sex peptide (SP) during copulation mediates these postmating responses [1, 3-6] via SP sensory neurons in the uterus defined by coexpression of the proprioceptive neuronal marker pickpocket (ppk) and the sex-determination genes doublesex (dsx) and fruitless (fru) [7-9]. Although neurons expressing dsx downstream of SP signaling have been shown to regulate postmating behaviors [9], how the female nervous system coordinates the change from pre- to postcopulatory states is unknown. Here, we show a role of the neuromodulator octopamine (OA) in the female postmating response. Lack of OA disrupts postmating responses in mated females, while increase of OA induces postmating responses in virgin females. Using a novel dsxFLP allele, we uncovered dsx neuronal elements associated with OA signaling involved in modulation of postmating responses. We identified a small subset of sexually dimorphic OA/dsx+ neurons (approximately nine cells in females) in the abdominal ganglion. Our results are consistent with a model whereby OA neuronal signaling increases after copulation, which in turn modulates changes in female behavior and physiology in response to reproductive state

    Activation of latent courtship circuitry in the brain of Drosophila females induces male-like behaviors

    No full text
    Courtship in Drosophila melanogaster offers a powerful experimental paradigm for the study of innate sexually dimorphic behaviors [1, 2]. Fruit fly males exhibit an elaborate courtship display toward a potential mate [1, 2]. Females never actively court males, but their response to the male’s display determines whether mating will actually occur. Sex-specific behaviors are hardwired into the nervous system via the actions of the sex determination genes doublesex (dsx) and fruitless (fru) [1]. Activation of male-specific dsx/fru+ P1 neurons in the brain initiates the male’s courtship display [3, 4], suggesting that neurons unique to males trigger this sex-specific behavior. In females, dsx+ neurons play a pivotal role in sexual receptivity and post-mating behaviors [1, 2, 5, 6, 7, 8, 9]. Yet it is still unclear how dsx+ neurons and dimorphisms in these circuits give rise to the different behaviors displayed by males and females. Here, we manipulated the function of dsx+ neurons in the female brain to investigate higher-order neurons that drive female behaviors. Surprisingly, we found that activation of female dsx+ neurons in the brain induces females to behave like males by promoting male-typical courtship behaviors. Activated females display courtship toward conspecific males or females, as well other Drosophila species. We uncovered specific dsx+ neurons critical for driving male courtship and identified pheromones that trigger such behaviors in activated females. While male courtship behavior was thought to arise from male-specific central neurons, our study shows that the female brain is equipped with latent courtship circuitry capable of inducing this male-specific behavioral program

    Activation of latent courtship circuitry in the brain of Drosophila females induces male-like behaviors

    Get PDF
    Courtship in Drosophila melanogaster offers a powerful experimental paradigm for the study of innate sexually dimorphic behaviors [1, 2]. Fruit fly males exhibit an elaborate courtship display toward a potential mate [1, 2]. Females never actively court males, but their response to the male’s display determines whether mating will actually occur. Sex-specific behaviors are hardwired into the nervous system via the actions of the sex determination genes doublesex (dsx) and fruitless (fru) [1]. Activation of male-specific dsx/fru+ P1 neurons in the brain initiates the male’s courtship display [3, 4], suggesting that neurons unique to males trigger this sex-specific behavior. In females, dsx+ neurons play a pivotal role in sexual receptivity and post-mating behaviors [1, 2, 5, 6, 7, 8, 9]. Yet it is still unclear how dsx+ neurons and dimorphisms in these circuits give rise to the different behaviors displayed by males and females. Here, we manipulated the function of dsx+ neurons in the female brain to investigate higher-order neurons that drive female behaviors. Surprisingly, we found that activation of female dsx+ neurons in the brain induces females to behave like males by promoting male-typical courtship behaviors. Activated females display courtship toward conspecific males or females, as well other Drosophila species. We uncovered specific dsx+ neurons critical for driving male courtship and identified pheromones that trigger such behaviors in activated females. While male courtship behavior was thought to arise from male-specific central neurons, our study shows that the female brain is equipped with latent courtship circuitry capable of inducing this male-specific behavioral program
    corecore