99 research outputs found

    The National Ignition Facility: The World's Largest Laser

    Full text link
    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance including target and beam alignment. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal

    2D numerical study of the radiation influence on shock structure relevant to laboratory astrophysics

    Full text link
    Radiative shocks are found in various astrophysical objects and particularly at different stages of stellar evolution. Studying radiative shocks, their topology, and thermodynamical properties is therefore a starting point to understanding their physical properties. This study has become possible with the development of large laser facilities, which has provided fresh impulse to laboratory astrophysics. We present the main characteristics of radiative shocks modeled using cylindrical simulations. We focus our discussion on the importance of multi-dimensional radiative-transfer effects on the shock topology and dynamics. We present results obtained with our code HERACLES for conditions corresponding to experiments already performed on laser installations. The multi-dimensional hydrodynamic code HERACLES is specially adapted to laboratory astrophysics experiments and to astrophysical situations where radiation and hydrodynamics are coupled. The importance of the ratio of the photon mean free path to the transverse extension of the shock is emphasized. We present how it is possible to achieve the stationary limit of these shocks in the laboratory and analyze the angular distribution of the radiative flux that may emerge from the walls of the shock tube. Implications of these studies for stellar accretion shocks are presented.Comment: 8 pages, 7 figures, accepted for publication in A&

    A programmable beam shaping system for tailoring the profile of high fluence laser beams

    Get PDF
    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics

    Programmable beam spatial shaping system for the National Ignition Facility

    Full text link
    A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF
    corecore