469 research outputs found

    Cold DUst around NEarby Stars (DUNES). First results: A resolved exo-Kuiper belt around the solar-like star ζ^2 Ret

    Get PDF
    We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ^2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 μm fluxes from δ Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L_(dust)/L_* ~ 5 × 10^(-7) (1σ level) around those stars. A flattened, disk-like structure with a semi-major axis of ~100 AU in size is detected around ζ^2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L_(dust)/L_* ≈ 10^(-5)

    Chemical fingerprints of hot Jupiter planet formation

    Get PDF
    The current paradigm to explain the presence of Jupiters with small orbital periods (P << 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α\alpha elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding pp-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, << 0.01, 0.81, and 0.16 for metallicity, α\alpha, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α\alpha abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.Comment: Accepted by Astronomy & Astrophysic

    Connecting substellar and stellar formation. The role of the host star's metallicity

    Get PDF
    Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation process we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 MJup_{\rm Jup}. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.Comment: Accepted by A&

    Searching for signatures of planet formation in stars with circumstellar debris discs

    Get PDF
    (Abridged) Tentative correlations between the presence of dusty debris discs and low-mass planets have been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. We determine in a homogeneous way the metallicity, and abundances of a sample of 251 stars including stars with known debris discs, with debris discs and planets, and only with planets. Stars with debris discs and planets have the same [Fe/H] behaviour as stars hosting planets, and they also show a similar -Tc trend. Different behaviour in the -Tc trend is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. Stars hosting exclusively close-in giant planets show higher metallicities and positive -Tc slope. A search for correlations between the -Tc slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and as well as a weak correlation with the stellar age. The fact that stars with debris discs and stars with low-mass planets do not show neither metal enhancement nor a different -Tc trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works which reported differences in the -Tc trends between planet hosts and non hosts. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets.Comment: Accepted for publication in Astronomy and Astrophysic

    A Theoretical Construction of Thin Shell Wormhole from Tidal Charged Black hole

    Full text link
    Recently, Dadhich et al [ Phys.Lett.B 487, 1 (2000)] have discovered a black hole solution localized on a three brane in five dimensional gravity in the Randall-Sundrum scenario. In this article, we develop a new class of thin shell wormhole by surgically grafting above two black hole spacetimes. Various aspects of this thin wormhole are also analyzed.Comment: 14 pages, 6 figures, Accepted in Gen.Rel.Gra

    Collisional modelling of the debris disc around HIP 17439

    Full text link
    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. A good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not supported, although not ruled out, by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of discriminating between the competing scenarios by future observations are discussed.Comment: Astronomy and Astrophysics (accepted for publication). 11 pages, 8 figure

    The metallicity signature of evolved stars with planets

    Full text link
    We determine in a homogeneous way the metallicity and individual abundances of a large sample of evolved stars, with and without known planetary companions. Our methodology is based on the analysis of high-resolution echelle spectra. The metallicity distributions show that giant stars hosting planets are not preferentially metal-rich having similar abundance patterns to giant stars without known planetary companions. We have found, however, a very strong relation between the metallicity distribution and the stellar mass within this sample. We show that the less massive giant stars with planets (M < 1.5 Msun) are not metal rich, but, the metallicity of the sample of massive (M > 1.5 Msun), young (age < 2 Gyr) giant stars with planets is higher than that of a similar sample of stars without planets. Regarding other chemical elements, giant stars with and without planets in the mass domain M < 1.5 Msun show similar abundance patterns. However, planet and non-planet hosts with masses M > 1.5 Msun show differences in the abundances of some elements, specially Na, Co, and Ni. In addition, we find the sample of subgiant stars with planets to be metal rich showing similar metallicities to main-sequence planet hosts. The fact that giant planet hosts in the mass domain M < 1.5 Msun do not show metal-enrichment is difficult to explain. Given that these stars have similar stellar parameters to subgiants and main-sequence planet hosts, the lack of the metal-rich signature in low-mass giants could be explained if originated from a pollution scenario in the main sequence that gets erased as the star become fully convective. However, there is no physical reason why it should play a role for giants with masses M < 1.5 Msun but is not observed for giants with M > 1.5 Msun.Comment: Accepted for publication by A&A, 34 pages, 15 figures, abstract abridge
    • …
    corecore