861 research outputs found
Accounting for both electron--lattice and electron--electron coupling in conjugated polymers: minimum total energy calculations on the Hubbard--Peierls hamiltonian
Minimum total energy calculations, which account for both electron--lattice
and electron--electron interactions in conjugated polymers are performed for
chains with up to eight carbon atoms. These calculations are motivated in part
by recent experimental results on the spectroscopy of polyenes and conjugated
polymers and shed light on the longstanding question of the relative importance
of electron--lattice vs. electron--electron interactions in determining the
properties of these systems.Comment: 6 pages, Plain TeX, FRL-PSD-93GR
Spin-Peierls Dimerization of a s=1/2 Heisenberg Antiferromagnet on a Square Lattice
Dimerization of a spin-half Heisenberg antiferromagnet on a square lattice is
investigated for several possible dimerized configurations, some of which are
shown to have lower ground state energies than the others. In particular, the
lattice deformations resulting in alternate stronger and weaker couplings along
both the principal axes of a square lattice are shown to result in a larger
gain in magnetic energy. In addition, a `columnar' configuration is shown to
have a lower ground state energy and a faster increase in the energy gap
parameter than a `staggered' configuration. The inclusion of unexpanded
exchange coupling leads to a power law behaviour for the magnetic energy gain
and energy gap, which is qualitatively different from that reported earlier.
Instead of increasing as , the two quantities depend on
as This is true both in the near critical
regime as well as in the far regime . It is suggested that the unexpanded exchange coupling is as much a source
of the logarithmic dependence as a correction due to the contribution of
umklapp processes. Staggered magnetization is shown to follow the same -dependence in all the configurations in the small -regime, while for
, it follows the power law .Comment: 12 pages, 7 Postscript figures, RevTex forma
Implementing the GBT Data Transmission Protocol in FPGAs
International audienceThe GBT chip is a radiation tolerant ASIC that can be used to implement bidirectional multipurpose 4.8 Gb/s optical links for high-energy physics experiments. It will be proposed to the LHC experiments for combined transmission of physics data, trigger, timing, fast and slow control and monitoring. Although radiation hardness is required on detectors, it is not necessary for the electronics located in the counting rooms. Therefore, a study is being made to implement these GBT links on FPGAs. This paper will describe the GBT protocol implementation, the configuration of the transceivers on Altera Stratix II GX and Xilinx Virtex 4, the optimization of resource for multi-transceivers, the first data transmission tests and the source code availabilit
Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition
We present exact diagonalization results on a modified Peierls-Hubbard model
for the neutral-ionic phase transition. The ground state potential energy
surface and the infrared intensity of the Peierls mode point to a strong,
non-linear electron-phonon coupling, with effects that are dominated by the
proximity to the electronic instability rather than by electronic correlations.
The huge infrared intensity of the Peierls mode at the ferroelectric
transition is related to the temperature dependence of the dielectric constant
of mixed-stack organic crystals.Comment: 4 pages, 4 figure
Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators
We theoretically study the nonlinear optical response and photoexcited states
of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is
calculated by using the exact diagonalization technique on small clusters. From
the systematic study of the dependence of \chi^(3) on dimensionality, we find
that the spin-charge separation plays a crucial role in enhancing \chi^(3) in
the one-dimensional (1D) Mott insulators. Based on this result, we propose a
holon-doublon model, which describes the nonlinear response in the 1D Mott
insulators. These findings show that the spin-charge separation will become a
key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200
The Versatile Transceiver Proof of Concept
SLHC experiment upgrades will make substantial use of optical links to enable high-speed data readout and control. The Versatile Link project will develop and assess optical link architectures and components suitable for deployment at SLHC. The on-detector element will be bidirectional optoelectronic module: the Versatile Transceiver that will be based on a commercially available module type minimally customized to meet the constraints of the SLHC on-detector environment in terms of mass, volume, power consumption, operational temperature and radiation environment. We report on the first proof of concept phase of the development, showing the steps towards customization and first results of the radiation resistance of candidate optoelectronic components
Human white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potential
Epub ahead of print.-- The final publication is available at link.springer.comBlood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that
can be exploited to bioengineer long-lasting human vascular networks in vivo. However,
circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by
which ECFCs are mobilized into circulation is currently unknown, the reliability of peripheral
blood as a clinical source of ECFCs remains a concern. Thus, there is a need to find alternative
sources of autologous ECFCs. Here we aimed to determine whether ECFCs reside in the
vasculature of human white adipose tissue (WAT) and to evaluate if WAT-derived ECFCs
(watECFCs) have equal clinical potential to blood-derived ECFCs. We isolated the complete
endothelial cell (EC) population from intact biopsies of normal human subcutaneous WAT by
enzymatic digestion and selection of CD31+ cells. Subsequently, we extensively compared
WAT-derived EC phenotype and functionality to bonafide ECFCs derived from both umbilical
cord blood and adult peripheral blood. We demonstrated that human WAT is indeed a
dependable source of ECFCs with indistinguishable properties to adult peripheral blood ECFCs,
including hierarchical clonogenic ability, large expansion potential, stable endothelial phenotype,
and robust in vivo blood vessel-forming capacity. Considering the unreliability and low rate of
occurrence of ECFCs in adult blood and that biopsies of WAT can be obtained with minimal
intervention in an ambulatory setting, our results indicate WAT as a more practical alternative to
obtain large amounts of readily available autologous ECFCs for future vascular cell therapies.This work was supported by a
National Institutes of Health Grant (R00EB009096, J. M.-M).Peer reviewe
Supramolecular interactions in clusters of polar and polarizable molecules
We present a model for molecular materials made up of polar and polarizable
molecular units. A simple two state model is adopted for each molecular site
and only classical intermolecular interactions are accounted for, neglecting
any intermolecular overlap. The complex and interesting physics driven by
interactions among polar and polarizable molecules becomes fairly transparent
in the adopted model. Collective effects are recognized in the large variation
of the molecular polarity with supramolecular interactions, and cooperative
behavior shows up with the appearance, in attractive lattices, of discontinuous
charge crossovers. The mean-field approximation proves fairly accurate in the
description of the gs properties of MM, including static linear and non-linear
optical susceptibilities, apart from the region in the close proximity of the
discontinuous charge crossover. Sizeable deviations from the excitonic
description are recognized both in the excitation spectrum and in linear and
non-linear optical responses. New and interesting phenomena are recognized near
the discontinuous charge crossover for non-centrosymmetric clusters, where the
primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure
Bit-Vector Model Counting using Statistical Estimation
Approximate model counting for bit-vector SMT formulas (generalizing \#SAT)
has many applications such as probabilistic inference and quantitative
information-flow security, but it is computationally difficult. Adding random
parity constraints (XOR streamlining) and then checking satisfiability is an
effective approximation technique, but it requires a prior hypothesis about the
model count to produce useful results. We propose an approach inspired by
statistical estimation to continually refine a probabilistic estimate of the
model count for a formula, so that each XOR-streamlined query yields as much
information as possible. We implement this approach, with an approximate
probability model, as a wrapper around an off-the-shelf SMT solver or SAT
solver. Experimental results show that the implementation is faster than the
most similar previous approaches which used simpler refinement strategies. The
technique also lets us model count formulas over floating-point constraints,
which we demonstrate with an application to a vulnerability in differential
privacy mechanisms
A Fully Bidirectional Optical Network With Latency Monitoring Capability for the Distribution of Timing-Trigger and Control Signals in High-Energy Physics Experiments
The present paper discusses recent advances on a Passive Optical Network inspired Timing-Trigger and Control scheme for the future upgrade of the TTC system installed in the LHC experiments' and more specifically the currently known as TTCex to TTCrx link. The timing PON is implemented with commercially available FPGAs and 1-Gigabit Ethernet PON transceivers and provides a fixed latency gigabit downlink that can carry level-1 trigger accept decisions and commands as well as an upstream link for feedback from the front-end electronics
- …
