427,346 research outputs found

    Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications

    Get PDF
    In this research, we present a simple and cost effective soft lithographic process to fabricate PLA scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques

    Get PDF
    A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated

    Dynamic modeling and adaptive control for space stations

    Get PDF
    Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained

    Performance of the image statistics decoder in conjunction with the Goldstone-VLA array

    Get PDF
    During Voyager's Neptune encounter, the National Radio Astronomy Observatory's Very Large Array (VLA) will be arrayed with Goldstone antennas to receive the transmitted telemetry data from the spacecraft. The telemetry signal from the VLA will drop out periodically, resulting in a periodic drop in the received signal-to-noise ratio (SNR). The Image Statistics Decoder (ISD), which assumes a correlation between pixels, can improve the bit error rate (BER) for images during these dropout periods. Simulation results have shown that the ISD, in conjunction with the Goldstone-VLA array can provide a 3-dB gain for uncompressed images at a BER of 5.0 x 10(exp -3)

    Application of NASTRAN for stress analysis of left ventricle of the heart

    Get PDF
    Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance
    corecore