47,345 research outputs found
Probing Form Factors in Top Quark Pair Production at Colliders
We describe how to probe new physics through large CP violation effects and
non--standard Z-t-t couplings via the scattering process e^-e^+ -> t tbar.
[Talk presented at the Workshop on Physics and Experiments with Linear
Colliders, Waikoloa, Hawaii, 26-30 April 1993.]Comment: 4 pages, TeXsis, MSUTH 93/0
Acute kidney injury in the elderly: predisposition to chronic kidney disease and vice versa.
There have been considerable advances in the past few years in our understanding of how chronic kidney disease (CKD) predisposes to acute kidney injury (AKI) and vice versa. This review shows, however, that few studies have focused on the elderly or conducted stratified analysis by age. It does appear that elderly patients with estimated glomerular filtration rate (eGFR) 45-59 ml/min/1.73 m(2) are at higher risk for AKI compared with their counterparts with eGFR >60 ml/min/1.73 m(2). This is a similar relationship to that seen in younger patients, although effect size appears smaller. As the incidence of AKI has been increasing over the past several years, the proportion of elderly patients surviving after AKI has also been increasing. Since AKI heightens the risk for the development and acceleration of CKD, this implies significant public health concerns with regard to the absolute number of elderly persons developing incident CKD
B-meson signatures of a Supersymmetric U(2) flavor model
We discuss B-meson signatures of a Supersymmetric U(2) flavor model, with
relatively light (electroweak scale masses) third generation right-handed
scalars. We impose current B and K meson experimental constraints on such a
theory, and obtain expectations for B->X_s gamma, B->X_s glue, B->X_s l+ l-,
B->phi K_s, B_s-B_sbar mixing, and the dilepton asymmetry in B_s. We show that
such a theory is compatible with all current data, and furthermore, could
reconcile the apparent deviations from Standard Model predictions that have
been found in some experiments.Comment: 37 pages, 21 figures, RevTeX4; v.2 - minor modifications to improve
readability. Published versio
Non-Fermi liquid states in the pressurized system: two critical points
In the archetypal strongly correlated electron superconductor CeCuSi
and its Ge-substituted alloys CeCu(SiGe) two quantum
phase transitions -- one magnetic and one of so far unknown origin -- can be
crossed as a function of pressure \cite{Yuan 2003a}. We examine the associated
anomalous normal state by detailed measurements of the low temperature
resistivity () power law exponent . At the lower critical point
(at , ) depends strongly on Ge
concentration and thereby on disorder level, consistent with a
Hlubina-Rice-Rosch scenario of critical scattering off antiferromagnetic
fluctuations. By contrast, is independent of at the upper quantum
phase transition (at , ), suggesting critical
scattering from local or Q=0 modes, in agreement with a density/valence
fluctuation approach.Comment: 4 pages, including 4 figures. New results added. Significant changes
on the text and Fig.
On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk
We performed a series of hydro-dynamic simulations to investigate the orbital
migration of a Jovian planet embedded in a proto-stellar disk. In order to take
into account of the effect of the disk's self gravity, we developed and adopted
an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the
exact Reimann solution for isothermal or polytropic gas, with non-reflecting
boundary conditions. Our simulations indicate that in the study of the runaway
(type III) migration, it is important to carry out a fully self consistent
treatment of the gravitational interaction between the disk and the embedded
planet. Through a series of convergence tests, we show that adequate numerical
resolution, especially within the planet's Roche lobe, critically determines
the outcome of the simulations. We consider a variety of initial conditions and
show that isolated, non eccentric protoplanet planets do not undergo type III
migration. We attribute the difference between our and previous simulations to
the contribution of a self consistent representation of the disk's self
gravity. Nevertheless, type III migration cannot be completely suppressed and
its onset requires finite amplitude perturbations such as that induced by
planet-planet interaction. We determine the radial extent of type III migration
as a function of the disk's self gravity.Comment: 19 pages, 13 figure
Curvature and Acoustic Instabilities in Rotating Fluid Disks
The stability of a rotating fluid disk to the formation of spiral arms is
studied in the tightwinding approximation in the linear regime. The dispersion
relation for spirals that was derived by Bertin et al. is shown to contain a
new, acoustic instability beyond the Lindblad resonances that depends only on
pressure and rotation. In this regime, pressure and gravity exchange roles as
drivers and inhibitors of spiral wave structures. Other instabilities that are
enhanced by pressure are also found in the general dispersion relation by
including higher order terms in the small parameter 1/kr for wavenumber k and
radius r. These instabilities are present even for large values of Toomre's
parameter Q. Unstable growth rates are determined in four cases: a
self-gravitating disk with a flat rotation curve, a self-gravitating disk with
solid body rotation, a non-self-gravitating disk with solid body rotation, and
a non-self-gravitating disk with Keplerian rotation. The most important
application appears to be as a source of spiral structure, possibly leading to
accretion in non-self-gravitating disks, such as some galactic nuclear disks,
disks around black holes, and proto-planetary disks. All of these examples have
short orbital times so the unstable growth time can be small.Comment: 30 pages, 5 figures, scheduled for ApJ 520, August 1, 199
- …