173 research outputs found

    21-cm signatures of residual HI inside cosmic HII regions during reionization

    Full text link
    We investigate the impact of sinks of ionizing radiation on the reionization-era 21-cm signal, focusing on 1-point statistics. We consider sinks in both the intergalactic medium and inside galaxies. At a fixed filling factor of HII regions, sinks will have two main effects on the 21-cm morphology: (i) as inhomogeneous absorbers of ionizing photons they result in smaller and more widespread cosmic HII patches; and (ii) as reservoirs of neutral gas they contribute a non-zero 21-cm signal in otherwise ionized regions. Both effects damp the contrast between neutral and ionized patches during reionization, making detection of the epoch of reionization with 21-cm interferometry more challenging. Here we systematically investigate these effects using the latest semi-numerical simulations. We find that sinks dramatically suppress the peak in the redshift evolution of the variance, corresponding to the midpoint of reionization. As previously predicted, skewness changes sign at midpoint, but the fluctuations in the residual HI suppress a late-time rise. Furthermore, large levels of residual HI dramatically alter the evolution of the variance, skewness and power spectrum from that seen at lower levels. In general, the evolution of the large-scale modes provides a better, cleaner, higher signal-to-noise probe of reionization.Comment: Minor edits to agree with MNRAS published versio

    CO line emission from galaxies in the Epoch of Reionization

    Full text link
    We study the CO line luminosity (LCOL_{\rm CO}), the shape of the CO Spectral Line Energy Distribution (SLED), and the value of the CO-to-H2\rm H_2 conversion factor in galaxies in the Epoch of Reionization (EoR). To this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30pc30\, \rm{pc}), cosmological simulation of a main-sequence (M1010MM_{*}\approx10^{10}\, \rm{M_{\odot}}, SFR100Myr1SFR\approx 100\,\rm{M_{\odot}\, yr^{-1}}) galaxy, "Alth{\ae}a", at z6z\approx6. We find that the CO emission traces the inner molecular disk (r0.5kpcr\approx 0.5 \,\rm{kpc}) of Alth{\ae}a with the peak of the CO surface brightness co-located with that of the [CII] 158μm\rm \mu m emission. Its LCO(10)=104.85LL_{\rm CO(1-0)}=10^{4.85}\, \rm{L_{\odot}} is comparable to that observed in local galaxies with similar stellar mass. The high (Σgas220Mpc2\Sigma_{gas} \approx 220\, \rm M_{\odot}\, pc^{-2}) gas surface density in Alth{\ae}a, its large Mach number (\mach30\approx 30), and the warm kinetic temperature (Tk45KT_{k}\approx 45 \, \rm K) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-JJ, and a CO-to-H2\rm H_2 conversion factor αCO1.5M(Kkms1pc2)1\alpha_{\rm CO}\approx 1.5 \, \rm M_{\odot} \rm (K\, km\, s^{-1}\, pc^2)^{-1} lower than that of the Milky Way. The ALMA observing time required to detect (resolve) at 5σ\sigma the CO(7-6) line from galaxies similar to Alth{\ae}a is 13\approx13 h (38\approx 38 h).Comment: 16 pages, 14 figures, accepted for publication in MNRA

    Models of rotating coronae

    Full text link
    Fitting equilibrium dynamical models to observational data is an essential step in understanding the structure of the gaseous hot haloes that surround our own and other galaxies. However, the two main categories of models that are used in the literature are poorly suited for this task: (i) simple barotropic models are analytic and can therefore be adjusted to match the observations, but are clearly unrealistic because the rotational velocity vϕ(R,z)v_\phi(R,z) does not depend on the distance zz from the galactic plane, while (ii) models obtained as a result of cosmological galaxy formation simulations are more realistic, but are impractical to fit to observations due to high computational cost. Here we bridge this gap by presenting a general method to construct axisymmetric baroclinic equilibrium models of rotating galactic coronae in arbitrary external potentials. We consider in particular a family of models whose equipressure surfaces in the (R,z)(R,z) plane are ellipses of varying axis ratio. These models are defined by two one-dimensional functions, the axial ratio of pressure qaxis(z)q_{\rm axis}(z) and the value of the pressure Paxis(z)P_{\rm axis}(z) along the galaxy's symmetry axis. These models can have a rotation speed vϕ(R,z)v_\phi(R,z) that realistically decreases as one moves away from the galactic plane, and can reproduce the angular momentum distribution found in cosmological simulations. The models are computationally cheap to construct and can thus be used in fitting algorithms. We provide a python code that given qaxis(z)q_{\rm axis}(z), Paxis(z)P_{\rm axis}(z) and Φ(R,z)\Phi(R,z) returns ρ(R,z)\rho(R,z), T(R,z)T(R,z), P(R,z)P(R,z), vϕ(R,z)v_\phi(R,z). We show a few examples of these models using the Milky Way as a case study.Comment: Accepted for publication in MNRA

    Periodicity makes galactic shocks unstable - I. Linear analysis

    Full text link
    We study the dynamical stability of stationary galactic spiral shocks. The steady-state equilibrium flow contains a shock of the type derived by Roberts in the tightly wound approximation. We find that boundary conditions are critical in determining whether the solutions are stable or not. Shocks are unstable if periodic boundary conditions are imposed. For intermediate strengths of the spiral potential, the instability disappears if boundary conditions are imposed such that the upstream flow is left unperturbed as in the classic analysis of D'yakov and Kontorovich. This reconciles apparently contradictory findings of previous authors regarding the stability of spiral shocks. This also shows that the instability is distinct from the Kelvin-Helmholtz instability, confirming the findings of Kim et al. We suggest that instability is a general characteristics of periodic shocks, regardless of the presence of shear, and provide a physical picture as to why this is the case. For strong spiral potentials, high post-shock shear makes the system unstable also to parasitic Kelvin-Helmholtz instability regardless of the boundary conditions. Our analysis is performed in the context of a simplified problem that, while preserving all the important characteristics of the original problem, strips it from unnecessary complications, and assumes that the gas is isothermal, non self-gravitating, non-magnetised.Comment: Accepted for publication in MNRA

    Nuclear rings are the inner edge of a gap around the Lindblad Resonance

    Full text link
    Gaseous nuclear rings are large-scale coherent structures commonly found at the centres of barred galaxies. We propose that they are an accumulation of gas at the inner edge of an extensive gap that forms around the Inner Lindblad Resonance (ILR). The gap initially opens because the bar potential excites strong trailing waves near the ILR, which remove angular momentum from the gas disc and transport the gas inwards. The gap then widens because the bar potential continuously excites trailing waves at the inner edge of the gap, which remove further angular momentum, moving the edge further inwards until it stops at a distance of several wavelengths from the ILR. The gas accumulating at the inner edge of the gap forms the nuclear ring. The speed at which the gap edge moves and its final distance from the ILR strongly depend on the sound speed, explaining the puzzling dependence of the nuclear ring radius on the sound speed in simulations.Comment: Submitted to MNRAS. Comments welcom

    The Physical Origin and the Properties of Arm Spurs/Feathers in Local Simulations of the Wiggle Instability

    Full text link
    Gaseous substructures such as feathers and spurs dot the landscape of spiral arms in disc galaxies. One of the candidates to explain their formation is the wiggle instability of galactic spiral shocks. We study the wiggle instability using local 2D hydrodynamical isothermal non-self gravitating simulations. We find that: (1) Simulations agree with analytic linear stability analysis only under stringent conditions. They display surprisingly strong non-linear coupling between the different modes, even for small mode amplitudes (1%\sim 1\%). (2) We demonstrate that the wiggle instability originates from a combination of two physically distinct mechanisms: the first is the Kelvin-Helmholtz instability, and the second is the amplification of infinitesimal perturbations from repeated shock passages. These two mechanisms can operate simultaneously, and which mechanism dominates depends on the underlying parameters. (3) We explore the parameter space and study the properties of spurs/feathers generated by the wiggle instability. The wiggle instability is highly sensitive to the underlying parameters. The feather separation decreases, and the growth rate increases, with decreasing sound speed, increasing potential strength and decreasing interarm distance. (4) We compare our simulations with a sample of 20 galaxies in the HST Archival Survey of Spiral Arm Substructure of La Vigne et al. and find that the wiggle instability is able to reproduce the typical range of feather separations seen in observations. It remains unclear how the wiggle instability relates to competing mechanisms for spur/feather formation such as the magneto-jeans instability and the stochastic accumulation of gas due to correlated supernova feedback.Comment: Accepted for publication in MNRAS; Accepted 2022 April 26. Received 2022 April 26; in original form 2021 October 0

    A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient

    Get PDF
    Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Mutations in the CLCN7 gene are responsible not only for a substantial portion of ARO patients, but also for other forms of osteopetrosis characterized by different severity and inheritance. The lack of a clear genotype/phenotype correlation makes genetic counselling a tricky issue for CLCN7-dependent osteopetrosis. Here we characterize the first homozygous interstitial deletion in 16p13.3, detected by array Comparative Genomic Hybridization (a-CGH) in an ARO patient of Jordanian origin. The deletion involved other genes beside CLCN7, while the proband displayed a classic ARO phenotype; however her early death did not allow more extensive clinical investigations. The identification of this novel genomic deletion involving a large part of the CLCN7 gene is of clinical relevance, especially in prenatal diagnosis, and suggests the possibility that this kind of mutation has been underestimated so far. This data highlights the need for alternative approaches to genetic analysis also in other ARO-causative genes

    A high precision, compact electromechanical ground rotation sensor

    Get PDF
    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1×10^(−11)m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7×10^(−9)rad/√Hz at 10 mHz and 6.4×10^(−10)rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality

    Metal Enrichment in the Reionization Epoch

    Full text link
    The presence of elements heavier than helium ("metals") is of fundamental importance for a large number of astrophysical processes occurring in planet, star and galaxy formation; it also affects cosmic structure formation and evolution in several ways. Even a small amount of heavy elements can dramatically alter the chemistry of the gas, opening the path to complex molecules. Metals might enhance the ability of the gas to radiate away its thermal energy, thus favoring the formation of gravitationally bound objects; they can also condensate in a solid phase (dust grains), partly or totally blocking radiation from luminous sources. Finally, they represent useful tracers of energy deposition by stars and probe the physical properties of the environment by absorption or emission lines. Last, but certainly not least, life -- as we know it on Earth -- is tightly related to the presence of at least some of the heavy elements. In this pedagogical review I will concentrate on the connection between early metal enrichment and cosmic reionization. As we will see these two processes are intimately connected and their joint study might turn out to be fundamental in understanding the overall evolution of the Universe during the first billion years after the Big Bang, an epoch corresponding to redshifts z>6.Comment: Book chapter in Understanding the Epoch of Cosmic Reionization: Challenges and Progress, Springer International Publishing, Ed. Andrei Mesinger, ISBN 978-3-319-21956-1. arXiv admin note: text overlap with arXiv:astro-ph/0007248 by other author
    corecore