1,186 research outputs found

    Vulnerability of populations and the urban health care systems to nuclear weapon attack – examples from four American cities

    Get PDF
    BACKGROUND: The threat posed by the use of weapons of mass destruction (WMD) within the United States has grown significantly in recent years, focusing attention on the medical and public health disaster capabilities of the nation in a large scale crisis. While the hundreds of thousands or millions of casualties resulting from a nuclear weapon would, in and of itself, overwhelm our current medical response capabilities, the response dilemma is further exacerbated in that these resources themselves would be significantly at risk. There are many limitations on the resources needed for mass casualty management, such as access to sufficient hospital beds including specialized beds for burn victims, respiration and supportive therapy, pharmaceutical intervention, and mass decontamination. RESULTS: The effects of 20 kiloton and 550 kiloton nuclear detonations on high priority target cities are presented for New York City, Chicago, Washington D.C. and Atlanta. Thermal, blast and radiation effects are described, and affected populations are calculated using 2000 block level census data. Weapons of 100 Kts and up are primarily incendiary or radiation weapons, able to cause burns and start fires at distances greater than they can significantly damage buildings, and to poison populations through radiation injuries well downwind in the case of surface detonations. With weapons below 100 Kts, blast effects tend to be stronger than primary thermal effects from surface bursts. From the point of view of medical casualty treatment and administrative response, there is an ominous pattern where these fatalities and casualties geographically fall in relation to the location of hospital and administrative facilities. It is demonstrated that a staggering number of the main hospitals, trauma centers, and other medical assets are likely to be in the fatality plume, rendering them essentially inoperable in a crisis. CONCLUSION: Among the consequences of this outcome would be the probable loss of command-and-control, mass casualties that will have to be treated in an unorganized response by hospitals on the periphery, as well as other expected chaotic outcomes from inadequate administration in a crisis. Vigorous, creative, and accelerated training and coordination among the federal agencies tasked for WMD response, military resources, academic institutions, and local responders will be critical for large-scale WMD events involving mass casualties

    Nutritional intervention and impact of polyphenol on glycohaemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: systematic review and meta-analysis

    Get PDF
    Polyphenols have been extensively studied for their antioxidant and anti-inflammatory properties. Recently, their antiglycative actions by oxidative stress modulation have been linked to prevention of diabetes and associated complications. This paper assesses the evidence for polyphenol interventions on glycohaemoglobin (HbA1c) in non-diabetic, pre-diabetic and type 2 diabetes mellitus (T2DM) subjects. A systematic review of polyphenols clinical trials on HbA1c in humans was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis. Thirty-six controlled randomized trials with HbA1c values were included. Polyphenols (extracts, supplements, foods), were supplemented (28 mg to 1.5g) for 0.7 to 12 months. Combining all subjects (n=1954, mean baseline HbA1c=7.03%, 53 mmol/mol), polyphenol supplementation significantly (p<0.001) lowered HbA1c% by -0.53±0.12 units (-5.79±0.13 mmol/mol). This reduction was significant (p<0.001) in T2DM subjects, specifically (n=1426, mean baseline HbA1c=7.44%, 58 mmol/mol), with HbA1c% lowered by -0.21±0.04 units (-2.29±0.4 mmol/mol). Polyphenol supplementation had no significant effect (p>0.21) in the non-diabetic (n=258, mean baseline HbA1c=5.47%, 36 mmol/mol) and the pre-diabetic subjects (n=270, mean baseline HbA1c=6.06%, 43 mmol/mol) strata: -0.39±0.27 HbA1c% units (-4.3±0.3 mmol/mol), and -0.38±0.31 units (-4.2±0.31 mmol/mol), respectively. In conclusion, polyphenols can successfully reduce HbA1c in T2DM, without any intervention at glycaemia, and could contribute to the prevention of diabetes complications

    A New Limit on the Antiproton Lifetime

    Full text link
    Measurements of the cosmic ray pbar/p ratio are compared to predictions from an inhomogeneous disk-diffusion model of pbar production and propagation within the Galaxy, combined with a calculation of the modulation of the interstellar cosmic ray spectra as the particles propagate through the heliosphere to the Earth. The predictions agree with the observed pbar/p spectrum. Adding a finite pbar lifetime to the model, we obtain the limit tau_pbar > 0.8 Myr (90 % C.L.).Comment: 13 pages, 3 encapsulated Postscript figures, uses AASTeX; accepted by Astrophysical Journal; minor change

    Rodents as receptor species at a tritium

    Get PDF
    New methods are being employed on the Department of Energy’s Savannah River Site to deal with the disposal of tritium, including the irrigation of a hardwood/pine forest with tritiated water from an intercepted contaminant plume to reduce concentrations of tritium outcropping into Fourmile Branch, a tributary of the Savannah River. The use of this system has proven to be an effective means of tritium disposal. To evaluate the impact of this activity on terrestrial biota, rodent species were captured on the tritium disposal site and a control site during two trapping seasons in order to assess tritium exposure resulting from the forest irrigation. Control site mice had background levels of tritium, 0.02 Bq/mL, with disposal site mice having significantly higher tritium concentrations, meanZ34.86 Bq/mL. Whole body tritium concentrations of the mice captured at the disposal site were positively correlated with tritium application and negatively correlated with precipitation at the site

    The direct enhancement of positive palatability by chlordiazepoxide is antagonized by Ro 15-1788 and CGS 8216

    Full text link
    In a pre previous study, it was found that positive, palatability-dependent consummatory reactions in rats to intraorally infused tastes were facilitated by chlordiazepoxide (10 mg/kg). In contrast, the rats' more neutral or aversive reactions to these tastes were not facilitated by chlordiazepoxide. This suggested that chlordiazepoxide might selectively enhance the positive palatability of tastes. This effect was replicated in the present experiment, and in addition, the benzodiazepine antagonists Ro 15-1788 and CGS 8216 were found to counteract the enhancement of positive ingestive reactions produced by chlordiazepoxide. These antagonist effects generally suggest that the benzodiazepine receptor complex may be involved in making tastes more palatable after chlordiazepoxide administration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26762/1/0000314.pd

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Effect of vitamin D supplementation on selected inflammatory biomarkers in older adults: a secondary analysis of data from a randomised, placebo-controlled trial

    Get PDF
    Observational studies have suggested that 25-hydroxyvitamin D (25(OH)D) levels are associated with inflammatory markers. Most trials reporting significant associations between vitamin D intake and inflammatory markers used specific patient groups. Thus, we aimed to determine the effect of supplementary vitamin D using secondary data from a population-based, randomised, placebo-controlled, double-blind trial (Pilot D-Health trial 2010/0423). Participants were 60- to 84-year-old residents of one of the four eastern states of Australia. They were randomly selected from the electoral roll and were randomised to one of three trial arms: placebo (n 214), 750 μg (n 215) or 1500 μg (n 215) vitamin D3, each taken once per month for 12 months. Post-intervention blood samples for the analysis of C-reactive protein (CRP), IL-6, IL-10, leptin and adiponectin levels were available for 613 participants. Associations between intervention group and biomarker levels were evaluated using quantile regression. There were no statistically significant differences in distributions of CRP, leptin, adiponectin, leptin:adiponectin ratio or IL-10 levels between the placebo group and either supplemented group. The 75th percentile IL-6 level was 2·8 pg/ml higher (95 % CI 0·4, 5·8 pg/ml) in the 1500 μg group than in the placebo group (75th percentiles:11·0 v. 8·2 pg/ml), with a somewhat smaller, non-significant difference in 75th percentiles between the 750 μg and placebo groups. Despite large differences in serum 25(OH)D levels between the three groups after 12 months of supplementation, we found little evidence of an effect of vitamin D supplementation on cytokine or adipokine levels, with the possible exception of IL-6

    Variational Principles for Stellar Structure

    Full text link
    The four equations of stellar structure are reformulated as two alternate pairs of variational principles. Different thermodynamic representations lead to the same hydromechanical equations, but the thermal equations require, not the entropy, but the temperature as the thermal field variable. Our treatment emphasizes the hydrostatic energy and the entropy production rate of luminosity produced and transported. The conceptual and calculational advantages of integral over differential formulations of stellar structure are discussed along with the difficulties in describing stellar chemical evolution by variational principles.Comment: 28 pages, LaTeX, requires AASTeX, 1 PostScript figure, revisions: erratum; accepted by Astrophysical Journa
    • …
    corecore