701 research outputs found

    Trapping in the random conductance model

    Full text link
    We consider random walks on Zd\Z^d among nearest-neighbor random conductances which are i.i.d., positive, bounded uniformly from above but whose support extends all the way to zero. Our focus is on the detailed properties of the paths of the random walk conditioned to return back to the starting point at time 2n2n. We show that in the situations when the heat kernel exhibits subdiffusive decay --- which is known to occur in dimensions d4d\ge4 --- the walk gets trapped for a time of order nn in a small spatial region. This shows that the strategy used earlier to infer subdiffusive lower bounds on the heat kernel in specific examples is in fact dominant. In addition, we settle a conjecture concerning the worst possible subdiffusive decay in four dimensions.Comment: 21 pages, version to appear in J. Statist. Phy

    Mean-field driven first-order phase transitions in systems with long-range interactions

    Full text link
    We consider a class of spin systems on Zd\Z^d with vector valued spins (\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The interactions are generally spread-out in the sense that the Jx,yJ_{x,y}'s exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d3d\ge3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d=1,2d=1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique ``state,'' then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.Comment: 57 pages; uses a (modified) jstatphys class fil

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Superconductivity and charge carrier localization in ultrathin La1.85Sr0.15CuO4/La2CuO4\mathbf{{La_{1.85}Sr_{0.15}CuO_4}/{La_2CuO_4}} bilayers

    Get PDF
    La1.85Sr0.15CuO4\mathrm{La_{1.85}Sr_{0.15}CuO_4}/La2CuO4\mathrm{La_2CuO_4} (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15\_N/LCO\_M]) were grown on (001)-oriented {\slao} (SLAO) substrates with pulsed laser deposition (PLD). X-ray diffraction and reciprocal space map (RSM) studies confirmed the epitaxial growth of the bilayers and showed that a [LSCO15\_2/LCO\_2] bilayer is fully strained, whereas a [LSCO15\_2/LCO\_7] bilayer is already partially relaxed. The \textit{in situ} monitoring of the growth with reflection high energy electron diffraction (RHEED) revealed that the gas environment during deposition has a surprisingly strong effect on the growth mode and thus on the amount of disorder in the first UC of LSCO15 (or the first two monolayers of LSCO15 containing one CuO2\mathrm{CuO_2} plane each). For samples grown in pure N2O\mathrm{N_2O} gas (growth type-B), the first LSCO15 UC next to the SLAO substrate is strongly disordered. This disorder is strongly reduced if the growth is performed in a mixture of N2O\mathrm{N_2O} and O2\mathrm{O_2} gas (growth type-A). Electric transport measurements confirmed that the first UC of LSCO15 next to the SLAO substrate is highly resistive and shows no sign of superconductivity for growth type-B, whereas it is superconducting for growth type-A. Furthermore, we found, rather surprisingly, that the conductivity of the LSCO15 UC next to the LCO capping layer strongly depends on the thickness of the latter. A LCO capping layer with 7~UCs leads to a strong localization of the charge carriers in the adjacent LSCO15 UC and suppresses superconductivity. The magneto-transport data suggest a similarity with the case of weakly hole doped LSCO single crystals that are in a so-called {"{cluster-spin-glass state}"

    Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

    Get PDF
    Heteroepitaxial superlattices of [YBa2Cu3O7(n)/ La0.67Ca0.33MnO3(m)]x, where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (LSAT) (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects due to structural transitions at low temperature. The growth dynamics and the structure have been studied in-situ with reflection high energy electron diffraction (RHEED) and ex-situ with scanning transmission electron microscopy (STEM), x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and thus half of their hole doping reservoir. Nevertheless, from electric transport measurements on asuperlattice with n=2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic

    Colligative properties of solutions: I. Fixed concentrations

    Full text link
    Using the formalism of rigorous statistical mechanics, we study the phenomena of phase separation and freezing-point depression upon freezing of solutions. Specifically, we devise an Ising-based model of a solvent-solute system and show that, in the ensemble with a fixed amount of solute, a macroscopic phase separation occurs in an interval of values of the chemical potential of the solvent. The boundaries of the phase separation domain in the phase diagram are characterized and shown to asymptotically agree with the formulas used in heuristic analyses of freezing point depression. The limit of infinitesimal concentrations is described in a subsequent paper.Comment: 28 pages, 1 fig; see also math-ph/0407035 (both to appear in JSP

    Structural, magnetic and superconducting properties of pulsed-laser-deposition-grown La1.85Sr0.15CuO4/La2/3Ca1/3MnO3\rm{La_{1.85}Sr_{0.15}CuO_{4}/La_{2/3}Ca_{1/3}MnO_{3}} superlattices on (001)\rm{(001)}-oriented LaSrAlO4\rm{LaSrAlO_{4}} substrates

    Full text link
    Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO and LCMO these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of about 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H || ab and a sizeable paramagnetic shift for H || c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of about 190 K and a large low-temperature saturation moment of about 3.5(1) muB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant mechanisms.Comment: 13 pages, 11 figure

    New strategies to measure intracellular sodium concentrations

    Full text link
    Fluorescent ion indicators are widely used to measure ion concentrations in living cells. However, despite considerable efforts in synthesizing new compounds, no ratiometric sodium indicator is available that can be excited at visible wavelengths. Ratiometric indicators have an advantage in that measured fluorescence intensities can be corrected for fluctuations of the indicator concentration and the illumination intensity, which is not possible when non-ratiometric indicators are used. One way to circumvent this problem is to measure fluorescence lifetimes, which are independent of these factors. Another way to overcome the disadvantages of a non-ratiometric indicator dye is to embed it, together with a reference dye, into nanoparticles. By relating the indicator fluorescence to the fluorescence of the reference dye, inhomogeneities in the nanosensor concentration or the illumination intensity can be cancelled out reliably. In this study we compare the benefits and drawbacks of these approaches. © 2010 Copyright SPIE - The International Society for Optical Engineering
    corecore