188 research outputs found
NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization
Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function
Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome
Gain-of-function variants in p110δ, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K) expressed in lymphocytes, cause activated PI3-kinase δ syndrome (APDS), a primary immunodeficiency that is characterized by recurrent infections, viremia, lymphadenopathy, and autoimmunity. The mechanism of autoimmunity in APDS has not been well-understood. Here, we show the profound skewing of peripheral CD4+ T cells to a T follicular helper (TFH) phenotype in a patient with APDS bearing a novel p110δ variant, Y524S. We also saw a diminishment of transient Foxp3 expression in activated T cells. Mechanistic studies revealed that both the new variant and a previously described, pathogenic variant (E81K) enhanced an interaction between intracellular Osteopontin and p85α. This interaction had been shown in mice to promote TFH differentiation. Our results demonstrate a new influence of PI3K on human T cell differentiation that is unrelated to its lipid-kinase activity and suggest that TFH should be monitored in APDS patients
Recommended from our members
Dependence of Avidity on Linker Length for a Bivalent Ligand–Bivalent Receptor Model System
This paper describes a synthetic dimer of carbonic anhydrase, and a series of bivalent sulfonamide ligands with different lengths (25 to 69 Å between the ends of the fully extended ligands), as a model system to use in examining the binding of bivalent antibodies to antigens. Assays based on analytical ultracentrifugation and fluorescence binding indicate that this system forms cyclic, noncovalent complexes with a stoichiometry of one bivalent ligand to one dimer. This dimer binds the series of bivalent ligands with low picomolar avidities (Kdavidity = 3–40 pM). A structurally analogous monovalent ligand binds to one active site of the dimer with Kdmono = 16 nM. The bivalent association is thus significantly stronger (Kdmono/Kdavidity ranging from 500 to 5000 unitless) than the monovalent association. We infer from these results, and by comparison of these results to previous studies, that bivalency in antibodies can lead to associations much tighter than monovalent associations (although the observed bivalent association is much weaker than predicted from the simplest level of theory: predicted Kdavidity of 0.002 pM and Kdmono/Kdavidity 8 × 106 unitless).Chemistry and Chemical Biolog
TIM-1 and TIM-4 Glycoproteins Bind Phosphatidylserine and Mediate Uptake of Apoptotic Cells
SummaryThe T cell immunoglobulin mucin (TIM) proteins regulate T cell activation and tolerance. Here we showed that TIM-4 is expressed on human and mouse macrophages and dendritic cells, and both TIM-4 and TIM-1 specifically bound phosphatidylserine (PS) on the surface of apoptotic cells but not any other phospholipid tested. TIM-4+ peritoneal macrophages, TIM-1+ kidney cells, and TIM-4- or TIM-1-transfected cells efficiently phagocytosed apoptotic cells, and phagocytosis could be blocked by TIM-4 or TIM-1 monoclonal antibodies. Mutations in the unique cavity of TIM-4 eliminated PS binding and phagocytosis. TIM-4 mAbs that blocked PS binding and phagocytosis mapped to epitopes in this binding cavity. These results show that TIM-4 and TIM-1 are immunologically restricted members of the group of receptors whose recognition of PS is critical for the efficient clearance of apoptotic cells and prevention of autoimmunity
Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes
We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent, stem cell-derived cardiomyocytes, including contraction force, rate, duration, and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy, and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive, inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents, or as a platform for studying cardiomyocyte biology
CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing
CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses
Heterozygous FOXN1 Variants Cause Low TRECs and Severe T Cell Lymphopenia, Revealing a Crucial Role of FOXN1 in Supporting Early Thymopoiesis
FOXN1 is the master regulatory gene of thymic epithelium development. FOXN1 deficiency leads to thymic aplasia, alopecia, and nail dystrophy, accounting for the nude/severe combined immunodeficiency (nu/SCID) phenotype in humans and mice. We identified several newborns with low levels of T cell receptor excision circles (TRECs) and T cell lymphopenia at birth, who carried heterozygous loss-of-function FOXN1 variants. Longitudinal analysis showed persistent T cell lymphopenia during infancy, often associated with nail dystrophy. Adult individuals with heterozygous FOXN1 variants had in most cases normal CD4+ but lower than normal CD8+ cell counts. We hypothesized a FOXN1 gene dosage effect on the function of thymic epithelial cells (TECs) and thymopoiesis and postulated that these effects would be more prominent early in life. To test this hypothesis, we analyzed TEC subset frequency and phenotype, early thymic progenitor (ETP) cell count, and expression of FOXN1 target genes (Ccl25, Cxcl12, Dll4, Scf, Psmb11, Prss16, and Cd83) in Foxn1nu/+ (nu/+) mice and age-matched wild-type (+/+) littermate controls. Both the frequency and the absolute count of ETP were significantly reduced in nu/+ mice up to 3 weeks of age. Analysis of the TEC compartment showed reduced expression of FOXN1 target genes and delayed maturation of the medullary TEC compartment in nu/+ mice. These observations establish a FOXN1 gene dosage effect on thymic function and identify FOXN1 haploinsufficiency as an important genetic determinant of T cell lymphopenia at birth
Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding
For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering
Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors
- …