3,769 research outputs found

    Why Do Digital Native News Media Fail? An Investigation of Failure in the Early Start-Up Phase

    Get PDF
    Digital native news media have great potential for improving journalism. Theoretically, they can be the sites where new products, novel revenue streams and alternative ways of organizing digital journalism are discovered, tested, and advanced. In practice, however, the situation appears to be more complicated. Besides the normal pressures facing new businesses, entrepreneurs in digital news are faced with specific challenges. Against the background of general and journalism specific entrepreneurship literature, and in light of a practice–theoretical approach, this qualitative case study research on 15 German digital native news media outlets empirically investigates what barriers curb their innovative capacity in the early start-up phase. In the new media organizations under study here, there are—among other problems—a high degree of homogeneity within founding teams, tensions between journalistic and economic practices, insufficient user orientation, as well as a tendency for organizations to be underfinanced. The patterns of failure investigated in this study can raise awareness, help news start-ups avoid common mistakes before actually entering the market, and help industry experts and investors to realistically estimate the potential of new ventures within the digital news industry

    Influence of Domain Wall on Magnetocaloric Effect in GdPt2_{2}

    Full text link
    The resistivity, magnetoresistance and in-field heat capacity measurements were performed on GdPt2_{2} intermetallic compound. The magnetocaloric parameters ΔTad\Delta T_{ad} and ΔS-\Delta S were derived from the in-field heat capacity data. Comparison has been made between the magnetocaloric effect ΔS-\Delta S and difference in resistivity Δρ-\Delta \rho (=ρ(H)ρ(0))(=\rho(H)-\rho(0)) as a function of temperature. There is distinct difference in the temperature dependence of ΔS-\Delta S and Δρ-\Delta \rho below the ferromagnetic transition temperature. However after removing the domain wall contribution from Δρ-\Delta \rho, the nature of ΔS-\Delta S and Δρ-\Delta \rho dependence as a function of temperature are similar. Our observation indicates that the domain wall contribution in magnetocaloric effect is negligible in spite of the fact that it has significant contribution in magnetotransport.Comment: RevTex 4 pages, 6 figure

    Crystal growth and ambient and high pressure study of the reentrant superconductor Tm_2Fe_3Si_5

    Full text link
    We report single crystal growth of the reentrant superconductor Tm_2Fe_3Si_5, and measurements of the anisotropic static magnetic susceptibility \chi(T) and isothermal magnetization M(H), ac susceptibility \chi_ac(T), electrical resistivity \rho(T) and heat capacity C(T) at ambient pressure and \chi_ac(T) at high pressure. The magnetic susceptibility along the c-axis \chi_c(T) shows a small maximum around 250 K and does not follow the Curie-Weiss behavior while the magnetic susceptibility along the a-axis \chi_a(T) follows a Curie-Weiss behavior between 130 K and 300 K with a Weiss temperature \theta and an effective magnetic moment \mu_eff which depend on the temperature range of the fit. The easy axis of magnetization is perpendicular to the c-axis and \chi_a/\chi_c = 3.2 at 1.8 K. The ambient pressure \chi_ac(T) and C(T) measurements confirm bulk antiferromagnetic ordering at T_N = 1.1 K. The sharp drop in \chi_ac below T_N is suggestive of the existence of a spin-gap. We observe superconductivity only under applied pressures P\geq 2 kbar. The temperature-pressure phase diagram showing the non-monotonic dependence of the superconducting transition temperature T_c on pressure P is presented.Comment: 7 pages, 8 figure

    Ab initio exchange interactions and magnetic properties of Gd2Fe17 iron sublattice: rhombohedral vs. hexagonal phases

    Full text link
    In the framework of the LSDA+U method electronic structure and magnetic properties of the intermetallic compound Gd2Fe17 for both rhombohedral and hexagonal phases have been calculated. On top of that, ab initio exchange interaction parameters within the Fe sublattice for all present nearest and some next nearest Fe ions have been obtained. It was found that for the first coordination sphere direct exchange interaction is ferromagnetic. For the second coordination sphere indirect exchange interaction is observed to be weaker and of antiferromagnetic type. Employing the theoretical values of exchange parameters Curie temperatures Tc of both hexagonal and rhombohedral phases of Gd2Fe17 within Weiss mean-field theory were estimated. Obtained values of Tc and its increase going from the hexagonal to rhombohedral crystal structure of Gd2Fe17 agree well with experiment. Also for both structures LSDA+U computed values of total magnetic moment coincide with experimental ones.Comment: 20 pages, 2 figures; V2 as published in PR

    Geometrical effects on spin injection: 3D spin drift diffusion model

    Full text link
    We discuss a three-dimensional (3D) spin drift diffusion (SDD) model to inject spin from a ferromagnet (FM) to a normal metal (N) or semiconductor (SC). Using this model we investigate the problem of spin injection into isotropic materials like GaAs and study the effect of FM contact area and SC thickness on spin injection. We find that in order to achieve detectable spin injection a small contact area or thick SC samples are essential for direct contact spin injection devices. We investigate the use of thin metal films (Cu) proposed by S.B. Kumar et al. and show that they are an excellent substitute for tunnelling barriers (TB) in the regime of small contact area. Since most tunnelling barriers are prone to pinhole defects, we study the effect of pinholes in AlO tunnelling barriers and show that the reduction in the spin-injection ratio (γ\gamma) is solely due to the effective area of the pinholes and there is no correlation between the number of pinholes and the spin injection ratio.Comment: 5 pages, 6 figures. Accepted by JA

    Can antiferromagnetism and superconductivity coexist in the high-field paramagnetic superconductor Nd(O,F)FeAs?

    Full text link
    We present measurements of the temperature and field dependencies of the magnetization M(T,H) of Nd(O0.89F0.11)FeAs at fields up to 33T, which show that superconductivity with the critical temperature Tc ~ 51K cannot coexist with antiferromagnetic ordering. Although M(T,H) at 55 < T < 140K exhibits a clear Curie-Weiss temperature dependence corresponding to the Neel temperature TN ~ 11-12K, the behavior of M(T,H) below Tc is only consistent with either paramagnetism of weakly interacting magnetic moments or a spin glass state. We suggest that the anomalous magnetic behavior of an unusual high-field paramagnetic superconductor Nd(O1-xFx)FeAs is mostly determined by the magnetic Nd ions.Comment: 4 pages, 4 figure

    312 MAX Phases: Elastic Properties and Lithiation

    Get PDF
    Interest in the Mn+1AXn phases (M = early transition metal; A = group 13–16 elements, and X = C or N) is driven by their ceramic and metallic properties, which make them attractive candidates for numerous applications. In the present study, we use the density functional theory to calculate the elastic properties and the incorporation of lithium atoms in the 312 MAX phases. It is shown that the energy to incorporate one Li atom in Mo3SiC2, Hf3AlC2, Zr3AlC2, and Zr3SiC2 is particularly low, and thus, theoretically, these materials should be considered for battery applications

    Ferromagnetic order in U(Rh,Co)Ge

    Full text link
    We report the variation of ferromagnetic order in the pseudo-ternary compounds URh_{1-x}Co_{x}Ge (0 \leq x \leq 1). Magnetization and transport data taken on polycrystalline samples show that the Curie temperature T_{C} gradually increases with increasing Co content from a value of 9.5 K for URhGe to a maximum value of 20 K for x = 0.6 and then steadily decreases to 3 K for UCoGe. The magnetic interaction strength varies smoothly across the series. For all samples the electrical resistivity for T < T_{C} follows the behaviour \rho = \rho_{0} + AT^2. The A coefficient is dominated by scattering at spin waves and is strongly enhanced for x = 0 and 1.Comment: 12 pages (4 figures), submitted to SS
    corecore