4 research outputs found

    Sub-Surface Windscreen for the Measurement of Outdoor Infrasound

    Get PDF
    A windscreen has been developed that features two advantages favorable for the measurement of outdoor infrasound. First, the sub-surface location, with the top of the windscreen flush with the ground surface, minimizes the mean velocity of the impinging wind. Secondly, the windscreen material (closed cell polyurethane foam) has a sufficiently low acoustic impedance (222 times that of air) and wall thickness (0.0127 m) to provide a transmission coefficient of nearly unity over the infrasonic frequency range (0-20 Hz). The windscreen, a tightly-sealed box having internal dimensions of 0.3048 x 0.3048 x 0.3556 m, contains a microphone, preamplifier, and a cable feed thru to an external power supply. Provisions are made for rain drainage and seismic isolation. A three-element array, configured as an equilateral triangle with 30.48 m spacing and operating continuously in the field, periodically receives highly coherent signals attributed to emissions from atmospheric turbulence. The time delays between infrasonic signals received at the microphones permit determination of the bearing and elevation of the sources, which correlate well with locations of pilot reports (PIREPS) within a 320 km radius about the array. The test results are interpreted to yield spectral information on infrasonic emissions from clear air turbulence

    Device and method for measuring thermal conductivity of thin films

    Get PDF
    A device and method are provided for measuring the thermal conductivity of rigid or flexible, homogeneous or heterogeneous, thin films between 50 .mu.m and 150 .mu.m thick with relative standard deviations of less than five percent. The specimen is sandwiched between like material, highly conductive upper and lower slabs. Each slab is instrumented with six thermocouples embedded within the slab and flush with their corresponding surfaces. A heat source heats the lower slab and a heat sink cools the upper slab. The heat sink also provides sufficient contact pressure onto the specimen. Testing is performed within a vacuum environment (bell-jar) between 10.sup.-3 to 10.sup.-6 Torr. An anti-radiant shield on the interior surface of the bell-jar is used to avoid radiation heat losses. Insulation is placed adjacent to the heat source and adjacent to the heat sink to prevent conduction losses. A temperature controlled water circulator circulates water from a constant temperature bath through the heat sink. Fourier's one-dimensional law of heat conduction is the governing equation. Data, including temperatures, are measured with a multi-channel data acquisition system. On-line computer processing is used for thermal conductivity calculations

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    No full text
    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions
    corecore