43 research outputs found

    Spatial and temporal variation in penetrative strain during compression: Insights from analog models

    Get PDF
    Penetrative strain constitutes the proportion of the total shortening across an orogen that is not accommodated by the development of macroscale structures such as folds and thrusts. The accommodation of shortening by penetrative strain is widely considered to be an important process during compression, but variation in the distribution of penetrative strain during a deformation sequence is not well understood. This study provides some first-order constraints on magnitude, timing, and distribution of penetrative strain during deformation. Eight simple models, each with a geometrically and mechanically similar starting configuration, within the limits of sandbox models, were shortened to different amounts. Model results indicate first that penetrative strain increases with depth in any given model, and second that the proportion of the total shortening accommodated by penetrative strain varies with time. As the deforming wedge approaches stability, penetrative strain is highest just before initiation of a new thrust fault, after which the penetrative strain component abruptly decreases. Each model also contains a foreland zone of penetrative strain, in which penetrative strain decreases exponentially away from the deformation front. These results are consistent with available field data. Restoration of a seismic-scale cross section indicates that model results can be used to predict the amount of penetrative strain and thus the true total shortening across a deformed region. Estimates of this type may be made for additional cross sections and may provide answers to the problem of “missing shortening” across orogens and the total amount of shortening experienced at collisional plate margins

    Spatial and temporal variation in penetrative strain during compression: Insights from analog models

    Get PDF
    Penetrative strain constitutes the proportion of the total shortening across an orogen that is not accommodated by the development of macroscale structures such as folds and thrusts. The accommodation of shortening by penetrative strain is widely considered to be an important process during compression, but variation in the distribution of penetrative strain during a deformation sequence is not well understood. This study provides some first-order constraints on magnitude, timing, and distribution of penetrative strain during deformation. Eight simple models, each with a geometrically and mechanically similar starting configuration, within the limits of sandbox models, were shortened to different amounts. Model results indicate first that penetrative strain increases with depth in any given model, and second that the proportion of the total shortening accommodated by penetrative strain varies with time. As the deforming wedge approaches stability, penetrative strain is highest just before initiation of a new thrust fault, after which the penetrative strain component abruptly decreases. Each model also contains a foreland zone of penetrative strain, in which penetrative strain decreases exponentially away from the deformation front. These results are consistent with available field data. Restoration of a seismic-scale cross section indicates that model results can be used to predict the amount of penetrative strain and thus the true total shortening across a deformed region. Estimates of this type may be made for additional cross sections and may provide answers to the problem of “missing shortening” across orogens and the total amount of shortening experienced at collisional plate margins

    Sheeting joints and polygonal patterns in the Navajo Sandstone, southern Utah: Controlled by rock fabric, tectonic joints, buckling, and gullying

    Get PDF
    Sheeting joints are ubiquitous in outcrops of the Navajo Sandstone on the west-central Colorado Plateau, USA. As in granitic terrains, these are opening- mode fractures and form parallel to land surfaces. In our study areas in south-central Utah, liquefaction during Jurassic seismic events destroyed stratification in large volumes of eolian sediment, and first-order sheeting joints are now preferentially forming in these structureless (isotropic) sandstones. Vertical cross-joints abut the land-surface-parallel sheeting joints, segmenting broad (tens of meters) rock sheets into equant, polygonal slabs ~5 m wide and 0.25 m thick. On steeper slopes, exposed polygonal slabs have domed surfaces; eroded slabs reveal an onion-like internal structure formed by 5-m-wide, second-order sheeting joints that terminate against the crossjoints, and may themselves be broken into polygons. In many structureless sandstone bodies, however, the lateral extent of first-order sheeting joints is severely limited by pre-existing, vertical tectonic joints. In this scenario, non-conjoined sheeting joints form extensive agglomerations of laterally contiguous, polygonal domes 3–6 m wide, exposing exhumed sheeting joints. These laterally confined sheeting joints are, in turn, segmented by short vertical cross-joints into numerous small (~0.5 m) polygonal rock masses. We hypothesize that the sheeting joints in the Navajo Sandstone form via contemporaneous, land-surface-parallel compressive stresses, and that vertical cross-joints that delineate polygonal masses (both large and small) form during compression-driven buckling of thin, convex-up rock slabs. Abrasion of friable sandstone during runoff events widens vertical tectonic joints into gullies, enhancing land-surface convexity. Polygonal rock slabs described here provide a potential model for interpretation of similar-appearing patterns developed on the surface of Mars

    Accommodation of penetrative strain during deformation above a ductile décollement

    Get PDF
    The accommodation of shortening by penetrative strain is widely considered as an important process during contraction, but the distribution and magnitude of penetrative strain in a contractional system with a ductile décollement are not well understood. Penetrative strain constitutes the proportion of the total shortening across an orogen that is not accommodated by the development of macroscale structures, such as folds and thrusts. In order to create a framework for understanding penetrative strain in a brittle system above a ductile décollement, eight analog models, each with the same initial configuration, were shortened to different amounts in a deformation apparatus. Models consisted of a silicon polymer base layer overlain by three fine-grained sand layers. A grid was imprinted on the surface to track penetra- tive strain during shortening. As the model was shortened, a series of box fold structures developed, with a zone of penetrative strain in the foreland. Penetrative strain in the foreland decreases away from the fold belt. Restoration of the model layers to the horizontal indicates that penetrative strain accounts for 90.5%-30.8% of total shortening in a brittle system with a ductile décollement, compared to 45.2%–3.6% within a totally brittle system. Analog model geometries were consistent with the deformation styles observed in salt-floored systems, such as the Swiss Jura. Penetrative strain has not been accounted for in previous studies of salt-floored regions and estimates of this type could help resolve concerns of missing shortening highlighted by global positioning system data

    The influence of the Great Falls Tectonic Zone on the thrust sheet geometry of the southern Sawtooth Range, Montana, USA

    Get PDF
    The reactivation potential of pre-existing deep-seated structures influences deformation structures produced in subsequent compression. This contribution investigates thrust geometries produced in surface thrust sheets of the Sawtooth Range, Montana, USA, deforming over a previously faulted sedimentary section. Surface thrust fault patterns were picked using existing maps and remote sensing. Thrust location and regional transport direction was also verified in the field. These observations were used to design a series of analogue models, involving deformation of a brittle cover sequence over a lower section with varying numbers of vertical faults. A final model tested the effect of decoupling the upper cover and lower section with a ductile detachment, in a scenario closer to that of the Sawtooth Range. Results demonstrate that complexity in surface thrust sheets can be related to heterogeneity within the lower sedimentary section, even when there is a detachment between this section and the rest of the cover. This complexity is best observed in the map view, as the models do not show the deep-seated faults propagating into the cover. These results were then used to predict specific locations of discrete basement fault strands in the study area, associated with what is generally mapped as the Scapegoat-Bannatyne Trend. The deep-seated faults are more likely to be reactivated as strike-slip features in nature, given the small obliquity between the ENE-directed compression direction and the NE-oriented basement faults. More generally, these results can be used to govern evaluation of thrust belts deforming over faulted basement, and to predict the locations of specific fault strands in a region where this information is unknow

    Post-Mississippian tectonic evolution of the Nemaha Tectonic Zone and Midcontinent Rift System, SE Nebraska and N Kansas

    Get PDF
    The geologic structures of the central Midcontinent of the USA are largely buried and known only from geophysical datasets, coupled with sparse well control and limited outcrop. Such unconstrained geophysical models preclude a deeper assessment of possible continental interior seismic hazards, which have the potential to cause appreciable damage. Within the study area in southeastern Nebraska and northeastern Kansas is an area of elevated seismic risk, with a spatial relationship to the Nemaha Tectonic Zone and the Midcontinent Rift System. Using sequential restorations of three published cross sections within Nebraska and Kansas this study demonstrates that the Nemaha Tectonic Zone and Midcontinent Rift System have each been reactivated several times since the end of the Mississippian (the details of deformation prior to the Mississippian are not considered). Our reconstructions indicate that in addition to major Pennsylvanian-Early Permian fault reactivation during the Ancestral Rocky Mountain orogeny there was also deformation both prior to the post-Mississippian unconformity associated with uplift on the Nemaha Tectonic Zone and after the deposition of late Early-early Late Cretaceous sediments in the study area, potentially due to the Laramide orogeny. Results also indicate that the magnitude of the far-field stresses is sufficient to cause seismogenic reactivation on favorably oriented pre-existing faults. This history of reactivation of geologic structures in the central Midcontinent suggests that seismic hazards in the region in the present cannot be ruled out. Though dangerous large earthquakes are uncommon in the continental interior, seismic activity along the structures in the study area would threaten several large population centers and the potential for this activity should not be ignored

    Post-Mississippian tectonic evolution of the Nemaha Tectonic Zone and Midcontinent Rift System, SE Nebraska and N Kansas

    Get PDF
    The geologic structures of the central Midcontinent of the USA are largely buried and known only from geophysical datasets, coupled with sparse well control and limited outcrop. Such unconstrained geophysical models preclude a deeper assessment of possible continental interior seismic hazards, which have the potential to cause appreciable damage. Within the study area in southeastern Nebraska and northeastern Kansas is an area of elevated seismic risk, with a spatial relationship to the Nemaha Tectonic Zone and the Midcontinent Rift System. Using sequential restorations of three published cross sections within Nebraska and Kansas this study demonstrates that the Nemaha Tectonic Zone and Midcontinent Rift System have each been reactivated several times since the end of the Mississippian (the details of deformation prior to the Mississippian are not considered). Our reconstructions indicate that in addition to major Pennsylvanian-Early Permian fault reactivation during the Ancestral Rocky Mountain orogeny there was also deformation both prior to the post-Mississippian unconformity associated with uplift on the Nemaha Tectonic Zone and after the deposition of late Early-early Late Cretaceous sediments in the study area, potentially due to the Laramide orogeny. Results also indicate that the magnitude of the far-field stresses is sufficient to cause seismogenic reactivation on favorably oriented pre-existing faults. This history of reactivation of geologic structures in the central Midcontinent suggests that seismic hazards in the region in the present cannot be ruled out. Though dangerous large earthquakes are uncommon in the continental interior, seismic activity along the structures in the study area would threaten several large population centers and the potential for this activity should not be ignored

    Spatial arrangement of fold types in the Zagros Simply Folded Belt, Iran, indicated by landform morphology and drainage pattern characteristics

    Get PDF
    The spatial arrangement of fold types within the Zagros Simply Folded Belt was analysed using satellite images, a digital elevation model and a digital drainage network. Distinct fold geometries, principally fault-bend folds and detachment folds, can be identified by characteristic interactions with streams flowing SW from the High Zagros Mountains into the Persian Gulf. In addition, the morphology of the landforms is reflected in the minor channel patterns across the folds. This morphology can also be categorised using geomorphic indices, L/W ratio and symmetry index. The distribution of fold types is shown for the region N27°-N30°, E50°-E54° at a scale of 1:750,000. Anomalously long, high-aspect ratio folds, coincident with topographic steps, were inferred to be fault-bend folds, crossed by multiple wind gaps, overlying major thrust faults. These faults formed sequentially as the deformation front migrated from the collision zone towards the SW, causing diversion of stream channels. Movement up thrust ramps created fault-bend folds behind which serial detachment folding developed in the cover

    Seismicity in Nebraska and adjacent states: The historical perspective and current trends

    Get PDF
    A sudden spike in earthquake events has been observed in central Nebraska. Since April 2018, 26 earthquakes with equivalent moment magnitudes from 2.7 to 4.1 occurred, clustered tightly in Custer County. A similar cluster of 24 earthquakes with equivalent moment magnitudes from 2.6 to 3.7 occurred in Jewell County in northern Kansas in 2017. We have compiled an earthquake database for Nebraska and parts of adjacent states from different sources to determine whether these recent earthquake spikes are consistent with historic seismicity. We identified two historic earthquake clusters occurring in our study area. The first contained 32 events and was active in Red Willow County in southwestern Nebraska from 1977 to 1982. As it coincides spatially with the Sleepy Hollow oil field, it may be related to enhanced oil recovery from that field, although it is also located at the edge of the Chadron-Cambridge Arch. The second historical earthquake cluster is located in Pawnee and Richardson counties in southwestern Nebraska and includes eight earthquakes with equivalent moment magnitudes of 2.3 to 2.8 that occurred in a period from 1982 to 1989 over the Nemaha uplift and appear to be related to the Humboldt fault. We note an increase in both maximum magnitude, as well as in the cumulative seismic moment per cluster with time. We have also used gravity and magnetic fields to map potential basement faults in the study area. Our analysis shows that the two recent earthquake spikes are aligned with the proposed basement faults. Despite this correlation, the cause of this sudden spike in seismicity is not well understood, as the stresses that might reactivate these basement faults are unknown. In addition, both recent clusters are distant from oil and gas operations. More seismic stations are necessary in central Nebraska in order to better detect focal depths and faulting style in the ongoing cluster of earthquakes and investigate possible causes

    Late Cretaceous to Recent Deformation Related to Inherited Structures and Subsequent Compression within the Persian Gulf: A 2D Seismic Case Study

    Get PDF
    The Persian Gulf is part of an asymmetric foreland basin related to the Zagros Orogen. Few published studies of this basin and associated onshore areas include seismic reflection data. We present a seismic-stratigraphic interpretation based on marine 2D seismic data, which reveals the presence of two types of compressional structures within the basin: (1) faulted domes related to salt movement and the offshore trace of a NNE–SSW-trending dextral basement fault (the Kazerun Fault); (2) long-wavelength (16 km), low-amplitude (60 ms two-way travel time) folds relating to the advancing deformation front associated with the orogen. Thinning of age-constrained stratal units across structures related to the offshore trace of the Kazerun Fault implies a distinct pulse of uplift on this fault during the Maastrichtian. The geometry of growth strata across other intra-basin structures suggests a second, later stage of deformation, which began in the Middle Miocene. Thickening and folding of post-Middle Miocene stratal units towards the NE (i.e. towards the Zagros Orogen) is interpreted to reflect rapid loading, subsidence and compression related to southwestwards advance of the orogen. The results of this study have implications for the interaction between pre-existing structures and later compressional events both within the Persian Gulf and elsewhere
    corecore