3 research outputs found

    Terahertz and far infrared radiation generation in air plasma created by bichromatic subpicosecond laser pulses

    Get PDF
    Here, we report on terahertz (THz) radiation generation in air driven by the fundamental and second harmonic of Yb:KGW laser pulses with durations of a few hundred femtoseconds. It was found that the spectrum of generated THz pulses surprisingly spans up to 50 THz, which is comparable to that usually obtained using much shorter Ti:sapphire laser pulses. The broad bandwidth is attributed to a strong spatiotemporal reshaping of the pump pulses in a filament. The achieved energy conversion efficiency is comparable to the one usually obtained from much shorter pump pulses and could be further improved by an optimized experimental setup. The obtained results indicate that compact Yb-based sources provide an attractive alternative to much larger and expensive laser systems

    Terahertz pulse generation by multi-color laser fields with linear vs. circular polarization

    No full text
    International audienc

    Terahertz pulse generation by two-color laser fields with circular polarization

    Get PDF
    27 pages, 13 figuresInternational audienceWe study the influence of the polarization states of femtosecond two-color pulses ionizing gases on the emitted terahertz radiation. A local-current model and plane-wave evaluations justify the previously-reported impact on the THz energy yield and an (almost) linearly-polarized THz field when using circularly-polarized laser harmonics. For such pump pulses, the THz yield is independent on the relative phase between the two colors. When the pump pulses have same helicity, the increase in the THz yield is associated to longer ionization sequences and higher electron transverse momenta acquired in the driving field. Reversely, for two color pulses with opposite helicity, the dramatic loss of THz power comes from destructive interferences driven by the highly symmetric response of the photocurrents lined up on the third harmonic of the fundamental pulse. While our experiments confirm an increased THz yield for circularly polarized pumps of same helicity, surprisingly, the emitted THz radiation is not linearly-polarized. This effect is explained by means of comprehensive 3D numerical simulations highlighting the role of the spatial alignment and non-collinear propagation of the two colors
    corecore