294 research outputs found
Isospectral Graph Reductions and Improved Estimates of Matrices' Spectra
Via the process of isospectral graph reduction the adjacency matrix of a
graph can be reduced to a smaller matrix while its spectrum is preserved up to
some known set. It is then possible to estimate the spectrum of the original
matrix by considering Gershgorin-type estimates associated with the reduced
matrix. The main result of this paper is that eigenvalue estimates associated
with Gershgorin, Brauer, Brualdi, and Varga improve as the matrix size is
reduced. Moreover, given that such estimates improve with each successive
reduction, it is also possible to estimate the eigenvalues of a matrix with
increasing accuracy by repeated use of this process.Comment: 32 page
Billiards with polynomial mixing rates
While many dynamical systems of mechanical origin, in particular billiards,
are strongly chaotic -- enjoy exponential mixing, the rates of mixing in many
other models are slow (algebraic, or polynomial). The dynamics in the latter
are intermittent between regular and chaotic, which makes them particularly
interesting in physical studies. However, mathematical methods for the analysis
of systems with slow mixing rates were developed just recently and are still
difficult to apply to realistic models. Here we reduce those methods to a
practical scheme that allows us to obtain a nearly optimal bound on mixing
rates. We demonstrate how the method works by applying it to several classes of
chaotic billiards with slow mixing as well as discuss a few examples where the
method, in its present form, fails.Comment: 39pages, 11 figue
Restrictions and Stability of Time-Delayed Dynamical Networks
This paper deals with the global stability of time-delayed dynamical
networks. We show that for a time-delayed dynamical network with
non-distributed delays the network and the corresponding non-delayed network
are both either globally stable or unstable. We demonstrate that this may not
be the case if the network's delays are distributed. The main tool in our
analysis is a new procedure of dynamical network restrictions. This procedure
is useful in that it allows for improved estimates of a dynamical network's
global stability. Moreover, it is a computationally simpler and much more
effective means of analyzing the stability of dynamical networks than the
procedure of isospectral network expansions introduced in [Isospectral graph
transformations, spectral equivalence, and global stability of dynamical
networks. Nonlinearity, 25 (2012) 211-254]. The effectiveness of our approach
is illustrated by applications to various classes of Cohen-Grossberg neural
networks.Comment: 32 pages, 9 figure
Fine structure of distributions and central limit theorem in diffusive billiards
We investigate deterministic diffusion in periodic billiard models, in terms
of the convergence of rescaled distributions to the limiting normal
distribution required by the central limit theorem; this is stronger than the
usual requirement that the mean square displacement grow asymptotically
linearly in time. The main model studied is a chaotic Lorentz gas where the
central limit theorem has been rigorously proved. We study one-dimensional
position and displacement densities describing the time evolution of
statistical ensembles in a channel geometry, using a more refined method than
histograms. We find a pronounced oscillatory fine structure, and show that this
has its origin in the geometry of the billiard domain. This fine structure
prevents the rescaled densities from converging pointwise to gaussian
densities; however, demodulating them by the fine structure gives new densities
which seem to converge uniformly. We give an analytical estimate of the rate of
convergence of the original distributions to the limiting normal distribution,
based on the analysis of the fine structure, which agrees well with simulation
results. We show that using a Maxwellian (gaussian) distribution of velocities
in place of unit speed velocities does not affect the growth of the mean square
displacement, but changes the limiting shape of the distributions to a
non-gaussian one. Using the same methods, we give numerical evidence that a
non-chaotic polygonal channel model also obeys the central limit theorem, but
with a slower convergence rate.Comment: 16 pages, 19 figures. Accepted for publication in Physical Review E.
Some higher quality figures at http://www.maths.warwick.ac.uk/~dsander
Controllability for chains of dynamical scatterers
In this paper, we consider a class of mechanical models which consists of a
linear chain of identical chaotic cells, each of which has two small lateral
holes and contains a rotating disk at its center. Particles are injected at
characteristic temperatures and rates from stochastic heat baths located at
both ends of the chain. Once in the system, the particles move freely within
the cells and will experience elastic collisions with the outer boundary of the
cells as well as with the disks. They do not interact with each other but can
transfer energy from one to another through collisions with the disks. The
state of the system is defined by the positions and velocities of the particles
and by the angular positions and angular velocities of the disks. We show that
each model in this class is controllable with respect to the baths, i.e. we
prove that the action of the baths can drive the system from any state to any
other state in a finite time. As a consequence, one obtains the existence of at
most one regular invariant measure characterizing its states (out of
equilibrium)
Chaos in cylindrical stadium billiards via a generic nonlinear mechanism
We describe conditions under which higher-dimensional billiard models in
bounded, convex regions are fully chaotic, generalizing the Bunimovich stadium
to dimensions above two. An example is a three-dimensional stadium bounded by a
cylinder and several planes; the combination of these elements may give rise to
defocusing, allowing large chaotic regions in phase space. By studying families
of marginally-stable periodic orbits that populate the residual part of phase
space, we identify conditions under which a nonlinear instability mechanism
arises in their vicinity. For particular geometries, this mechanism rather
induces stable nonlinear oscillations, including in the form of
whispering-gallery modes.Comment: 4 pages, 4 figure
- …