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Brauer, Brualdi, and Varga improve as the matrix size is reduced.
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reduction, it is also possible to estimate the eigenvalues of a matrix
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1. Introduction

A remarkable theorem due to Gershgorin [10] states that if the matrix A ∈ Cn×n then the eigen-

values of A are contained in the union of the n discs

n⋃
i=1

⎧⎨
⎩λ ∈ C : |λ − Aii| �

n∑
j=1,j �=i

|Aij|
⎫⎬
⎭ .

This simple and geometrically intuitive result moreover implies a nonsingularity result for diagonally

dominant matrices (see Theorem 1.4 in [17]), which can be traced back to earlier work done by Lévy,

Desplanques,Minkowski, andHadamard [13,9,14,11].More recently, this result ofGershgorinhas been
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improved by Brauer and Varga [3,17] whose results are similar in spirit to Gershgorin’s in that each

assigns to every matrix A ∈ Cn×n a region of the complex plane containing the matrix’s eigenvalues.

Moreover, the same holds for a result of Brualdi [4] with the exception that the associated region is

define for a proper subset of Cn×n.

These improvements canbe summarized as follows. IfA ∈ Cn×n let�(A),K(A), andB(A)denote the
associated regions given respectively byGershgorin, Brauer, and the improvement of Brualdi’s theorem

givenbyVarga. Ifσ(A)denotes the eigenvalues ofA then it is known thatσ(A) ⊆ B(A) ⊆ K(A) ⊆ �(A)
for any complex valuedmatrix A (see [17] for details). Furthermore, if the region br(A) associated with

Brualdi’s original result is defined then it follows that σ(A) ⊆ B(A) ⊆ br(A) ⊆ K(A).
In this paper, our goal is to improveeachof the estimates ofGershgorin, Brauer, Brualdi, andVargaby

considering reductions in the structure of the weighted digraphs associated to each matrix A ∈ Cn×n.

To do so we first extend these classical results to a larger class of square matrices with entries in the

set W consisting of complex rational functions. The motivation for considering the class of matrices

with entries in W arises from the following.

In the study of dynamical networks, in which networks are typically described by large and often

complex graphs of interactions, it has been found that an important characteristic of a network is

the spectrum of the network’s adjacency matrix [2,16,1,15]. Using the theory developed in [6] it is

possible to reduce the graph G associated to some network to another smaller graph R. We refer to

this reduction process as an isospectral graph reduction, or simply a graph reduction, of G.

The main result of [6] is that the eigenvalues of the adjacency matrixM(G) of G and the adjacency

matrix M(R) of R differ at most by some set, which is known in advance. What is novel about this

process is that it equivalently allows for the reduction of an arbitrary matrix A ∈ Cn×n to a smaller

matrix R ∈ Wm×m (m < n) such that the eigenvalues of A and R differ by at most some set, known in

advance.

In the present paper we show that by using such graph reductions (equivalentlymatrix reductions)

one can improve Gershgorin, Brauer, and Brualdi-type estimates of the spectra of matrices in Cn×n.

Specifically, for M(G) ∈ Cn×n the regions in the complex plane for both Gershgorin and Brauer esti-

mates of the eigenvalues ofM(G) shrink as the graph G is reduced (see Theorems 5.1 and 5.3 for exact

statements). For the estimates associated with Brualdi and Varga we give a sufficient condition under

which such estimates also improve as the underlying graph is reduced (see Theorems 5.4 and 5.5).

We also note that, for a given graph (equivalently matrix), many graph reductions are typically

possible. Hence, this process is quite flexible. Moreover, as it is possible to sequentially reduce a graph

G, graph reductions on G can be used to estimate the spectrum of M(G) with increasing accuracy

depending on the extent to which G is reduced. In particular, if G is reduced as much as possible the

corresponding Gershgorin region is a finite set of points in the complex plane that differs from the

actual spectrum of M(G) by a uniquely defined set of points.

This paper is organized as follows. Section 2 introduces the formal definitions used in this paper.

Section 3 extends the results of Gershgorin, Brauer, Brualdi, and Varga to the class of matrices with

entries in W. Section 4 then summarizes and expands the theory of isospectral graph reductions

developed in [6]whichwill beused to improve the eigenvalue estimates of Section3. Section5 contains

the main results of this paper demonstrating that the procedure of isospectral graph reduction gives

better estimates of the spectra of matrices than the aforementioned methods. Section 6 gives some

natural applications of the theorems of Section 5. These include estimating the spectrumof a Laplacian

matrix of graph, estimating the spectral radius of a matrix, and determining useful reductions to use

for a given matrix (or equivalently, graph of a network).

2. Preliminaries

In this paper we consider two equivalent mathematical objects. The first is the set of graphs con-

sisting of all finite weighted digraphswith or without loops having no parallel edges and edgeweights

in the set W of complex rational functions (described below). We denote this class of graphs by G
where Gn is the set of graphs in G having n vertices. The second set of objects we consider are the

weighted adjacency matrices associated with the graphs in G. That is, the class of matrices Wn×n for

all n � 1.
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By way of notation we let the weighted digraph G ∈ G be the triple (V, E, ω) where V and E are

the finite sets denoting the vertices and edges of G respectively, the edges corresponding to ordered

pairs (v,w) for v,w ∈ V . Furthermore, ω : E → W where ω(e) is the weight of the edge e for e ∈ E.

We will use the convention that ω(e) = 0 if and only if e /∈ E.

For convenience, any graph that is denoted by some triple, e.g. G = (V, E, ω), will be assumed to

be in G. Moreover, if the vertex set of the graph G = (V, E, ω) is labeled V = {v1, . . . , vn} then we

denote the edge (vi, vj) by eij . For convenience, in the remainder of this paper if G = (V, E, ω) is a

graph in Gn then we will assume that its vertex set has some labeling V = {v1, . . . , vn}.
In order to describe the set of weights W let C[λ] denote the set of polynomials in the single

complex variable λ with complex coefficients. We define the set W to be the set of rational functions

of the form p/q where p, q ∈ C[λ] such that p and q have no common factors and q is nonzero.

The setW is thenafieldunderadditionandmultiplicationwith theconvention that common factors

are removedwhen two elements are combined. That is, if p/q, r/s ∈ W then p/q+ r/s = (ps+ rq)/qs
where the common factors of ps + rq and qs are removed. Similarly, in the product pr/qs of p/q and

r/s the common factors of pr and qs are removed.

In order to stress the generality of considering the set G we note that graphs which are either

undirected, unweighted or have parallel edges, can be considered to be graphs in G. This is done by

making an undirected graph G into a directed graph by orienting each of its edges in both directions.

In the case that G is unweighted, G can weighted by giving each edge unit weight. Also multiple edges

between two vertices of G may be considered a single edge by adding the weights of those multiple

edges and setting this to be the weight of this single equivalent edge.

To introduce the spectrum associated to a graph G ∈ G we will use the following notation. If

G = (V, E, ω) then the matrix M(G) = M(G, λ) defined entrywise by

M(G)ij = ω(eij)

is the weighted adjacency matrix of G.

We let the spectrum or eigenvalues of a matrixM = M(λ) ∈ Wn×n be the set

{λ ∈ C : det(M(λ) − λI) = 0}, (1)

where this set includes multiplicities. More specifically, as

det(M(λ) − λI) = p/q ∈ W

then the spectrum of M is the solutions to p = 0.

For the graph G we let σ(G) denote the spectrum of M(G). The spectrum of a matrix with entries

in W is therefore a generalization of the spectrum of a matrix with complex entries.

Aswe aremainly concernedwith the properties of the adjacencymatrix of graphs inGwenote that

there is a one-to-one correspondence between the graphs in Gn and the matrices Wn×n. Therefore,

we may talk of a graph G ∈ Gn associated with a matrix M = M(G) in Wn×n and vice-versa without

ambiguity.

3. Spectra estimation of graphs in G.

Here we extend the classical results of Gershgorin, Brauer, Brualdi, and the more recent work of

Varga tomatrices inWn×n (see for instance [17]). To do sowewill first define the notion of a polynomial

extension of a graph G ∈ G.

Definition 3.1. If G ∈ Gn and M(G)ij = pij/qij where pij, qij ∈ C[λ] let Li(G)=
∏n

j=1 qij for 1 � i � n.

We call the graph Ḡ with adjacency matrix

M(Ḡ)ij =
{
Li(G)M(G)ij i �= j

Li(G)
(
M(G)ij − λ

) + λ i = j
, 1 � i, j � n

the polynomial extension of G.
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To justify this name note that each M(Ḡ)ij is an element of C[λ] or M(Ḡ) has complex polynomial

entries. Moreover, we have the following result.

Lemma 3.2. If G ∈ G then σ(G) ⊆ σ(Ḡ).

Proof. For G ∈ Gn note that the matrixM(Ḡ) − λI is given by

(M(Ḡ) − λI)ij =
{
Li(G)M(G)ij i �= j

Li(G)
(
M(G)ij − λ

)
i = j

for 1 � i � n.

The matrix M(Ḡ) − λI is then the matrix M(G) − λI whose ith row has been multiplied by Li(G).
Therefore,

det
(
M(Ḡ) − λI

)
=

⎛
⎝ n∏

i=1

Li(G)

⎞
⎠ det (M(G) − λI)

implying σ(G) ⊆ σ(Ḡ). �

3.1. Gershgorin-type regions

As previously mentioned, a theorem of Gershgorin’s, originating from [10], gives a simple method

forbounding theeigenvaluesof a squarematrixwithcomplexvaluedentries. This result is the following

theorem which we formulate after introducing some notation.

If A ∈ Cn×n let

ri(A) =
n∑

j=1, j �=i

|Aij|, 1 � i � n (2)

be the ith row sum of A.

Theorem 3.3 (Gershgorin [10]). Let A ∈ Cn×n. Then all eigenvalues of A are contained in the set

�(A) =
n⋃

i=1

{λ ∈ C : |λ − Aii| � ri(A)}.

In order to extend Theorem 3.3 to the class of matrices Wn×n we use the following adaptation of

the notation given by (2). For G ∈ Gn let

ri(G) =
n∑

j=1,j �=i

|M(G)ij| for 1 � i � n

be the ith row sum of M(G).
Note that as M(Ḡ) ∈ C[λ]n×n, for any G ∈ G, we can view M(Ḡ) = M(Ḡ, λ) as a function

M(Ḡ, ·) : C → Cn×n and M(Ḡ, ·)ij : C → C. Likewise, we can consider ri(Ḡ) = ri(Ḡ, λ) to be the

function ri(Ḡ, ·) : C → C. However, typically we will suppress the dependence ofM(Ḡ) and ri(Ḡ) on
λ for ease of notation.

Theorem 3.4. Let G ∈ Gn. Then σ(G) is contained in the set

BW�(G) =
n⋃

i=1

{λ ∈ C : |λ − M(Ḡ)ii| � ri(Ḡ)}.

Proof. First note that for α ∈ σ(G) the matrix M(Ḡ, α) ∈ Cn×n. As Lemma 3.2 implies that α is

an eigenvalue of the matrix M(Ḡ, α) then by an application of Gershgorin’s theorem the inequality

|α − M(Ḡ, α)ii| � ri(Ḡ, α) holds for some 1 � i � n. Hence, α ∈ BW�(G). �
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Fig. 1. The graph G (left) and BW�(G) (right) where σ(G) = {−1, −1, 2, −i, i} is indicated.

Because it will be useful later in comparing different regions in the complex plane, for G ∈ Gn we

denote

BW�(G)i = {λ ∈ C : |λ − M(Ḡ)ii| � ri(Ḡ)} where 1 � i � n

and call this the ith Gershgorin-type region of G. Similarly, we call the union BW�(G) of these n sets the

Gershgorin-type region of the graph G.

As an illustration of Theorem 3.4 consider the following example. Let G ∈ G be the graph with

adjacency matrix

M(G) =

⎡
⎢⎢⎢⎣

λ+1

λ2
1
λ

λ+1
λ

2λ+1

λ2
1
λ

1
λ

0 1 0

⎤
⎥⎥⎥⎦ . (3)

As det(M(G, λ) − λI) = (−λ5 + 2λ3 + 2λ2 + 3λ + 2)/(λ2) one can compute that σ(G) =
{−1, −1, i, −i, 2}. The corresponding Gershgorin-type region BW�(G) is shown in Fig. 1 where

M(Ḡ) =

⎡
⎢⎢⎢⎣

−λ5 + λ3 + λ2 + λ λ3 λ4 + λ3

2λ3 + λ2 −λ5 + λ3 + λ λ3

0 1 0

⎤
⎥⎥⎥⎦ .

We note here that BW�(G) is the union of the three regions BW�(G)1, BW�(G)2, and BW�(G)3
whose boundaries are shown in blue, red, and tan. The interior colors of these regions reflect their

intersections and the eigenvalues σ(G) are indicated as points. In the examples that follow we will

use the same technique to display similar regions.

3.2. Brauer-type regions

FollowingGershgorin, Brauerwas able to give the following eigenvalue inclusion result formatrices

with complex valued entries.
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Theorem 3.5 (Brauer [17]). Let A ∈ Cn×n where n � 2. Then all eigenvalues of A are located in the set

K(A) = ⋃
1�i,j�n

i �=j

{λ ∈ C : |λ − Aii||λ − Ajj| � ri(A)rj(A)}. (4)

The individual regions given by {λ ∈ C : |λ − Aii||λ − Ajj| � ri(A)rj(A)} in Eq. (4) are known as

Cassini ovals andmay consists of one or two distinct components.Moreover, there are
(
n

2

)
such regions

for any n × n matrix with complex entries. As with Gershgorin’s theorem we prove an extension to

Brauer’s theorem for matrices in Wn×n.

Theorem 3.6. Let G ∈ Gn where n � 2. Then σ(G) is contained in the set

BWK(G) = ⋃
1�i,j�n

i �=j

{λ ∈ C : |λ − M(Ḡ)ii||λ − M(Ḡ)jj| � ri(Ḡ)rj(Ḡ)}.

Also, BWK(G) ⊆ BW�(G).

Proof. As in the proof of Theorem 3.4, if α ∈ σ(G) then α ∈ σ(Ḡ) and the matrix M(Ḡ, α) ∈ Cn×n.

Brauer’s theorem therefore implies that

|α − M(Ḡ, α)ii||α − M(Ḡ, α)jj| � ri(Ḡ, α)rj(Ḡ, α)

for some pair of distinct integers i and j. It then follows that, α ∈ BWK(G) or σ(G) ⊆ BWK(G).
Following the proof in [17], to prove the assertion that BWK(G) ⊆ BW�(G) let

BWK(G)ij = {λ ∈ C : |λ − M(Ḡ, λ)ii||λ − M(Ḡ, λ)jj| � ri(Ḡ, λ)rj(Ḡ, λ)} (5)

for distinct i and j. The claim then is that BWK(G)ij ⊆ BW�(G)i ∪ BW�(G)j . To see this, assume for a

fixed λ that λ ∈ BWK(G)ij or

|λ − M(Ḡ, λ)ii||λ − M(Ḡ, λ)jj| � ri(Ḡ, λ)rj(Ḡ, λ).

If ri(Ḡ, λ)rj(Ḡ, λ) = 0 then either λ − M(Ḡ, λ)ii = 0 or λ − M(Ḡ, λ)jj = 0. As λ = M(Ḡ, λ)ii implies

λ ∈ BW�(G)i and λ = M(Ḡ, λ)jj implies λ ∈ BW�(G)j then λ ∈ BW�(G)i ∪ BW�(G)j .

If ri(Ḡ, λ)rj(Ḡ, λ) > 0 then it follows that( |λ − M(Ḡ, λ)ii|
ri(Ḡ, λ)

) ( |λ − M(Ḡ, λ)jj|
rj(Ḡ, λ)

)
� 1.

Since at least one of the two quotients on the left must be less than or equal to 1 then λ ∈ BW�(G)i ∪
BW�(G)j which verifies the claim and the result follows. �

We call the region BWK(G) the Brauer-type region of the graph G and the region BWK(G)ij given
in (5) the ijth Brauer-type region of G. Using Theorem 3.6 on the graph G given in Fig. 1 we have the

Brauer-type region shown in the left hand side of Fig. 2. On the right is a comparison between BWK(G)
and BW�(G) where the inclusion BWK(G) ⊆ BW�(G) is demonstrated.

3.3. Brualdi-type regions

In this sectionwe first extend a result of Varga [17], which is itself an extension of a result of Brualdi

[4]. This result of Varga relates the spectrum of a graph with complex weights to its cycle structure.

We then show that the same can be done for the original result of Brualdi.

A path P in the graph G = (V, E, ω) is a sequence of distinct vertices v1, . . . , vm ∈ V such that

ei,i+1 ∈ E for 1 � i � m − 1. In the case that the vertices v1, . . . , vm are distinct, with the exception

that v1 = vm, then P is a cycle. If γ is a cycle of G we denote it by its ordered set of vertices. That is,

if ei,i+1 ∈ E for 1 � i � m − 1 and em1 ∈ E then we write this cycle as the ordered set of vertices

{v1, . . . , vm} up to cyclic permutation. Moreover, we call a cycle consisting of a single vertex a loop.
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Fig. 2. Left: The Brauer region K(G) for G in Fig. 1. Right: K(G) ⊆ �(G).

A strong cycle of G is a cycle {v1, . . . , vm} such that m � 2. Furthermore, if vi ∈ V has no strong

cycle passing through it then we define its associated weak cycle as {vi} regardless of whether eii ∈ E.

For G ∈ G we let Cs(G) and Cw(G) denote the set of strong and weak cycles of G respectively and let

C(G) = Cs(G) ∪ Cw(G).
A directed graph is strongly connected if there is a path from each vertex of the graph to every

other vertex. The strongly connected components of G = (V, E, ω) are its maximal strongly connected

subgraphs. Moreover, the vertex set V = {v1, . . . , vn} of G can always be labeled in such a way that

M(G) has the triangular block structure

M(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(S1(G)) 0 . . . 0

∗ M(S2(G))
...

...
. . . 0

∗ . . . ∗ M(Sm(G))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Si(G) is a strongly connected component of G and ∗ are block matrices with possibly nonzero

entries (see [5,12], or [17] for more details).

As the strongly connected components of a graph are unique then for G ∈ Gn we define

r̃i(G) = ∑
j∈N�,j �=i

|M(S�(G))ij| for 1 � i � n,

where i ∈ N� and N� is the set of indices indexing the vertices in S�(G). That is, r̃i(G) is ri(G) restricted
to the strongly connected component containing vi. Furthermore, we let r̃i(Ḡ) = r̃i(Ḡ, λ) where we

again consider r̃i(Ḡ, ·) : C → C.

If A ∈ Cn×n then we write r̃i(G, λ) = r̃i(A) where A = M(G). Moreover, we let C(A) = Cs(A) ∪
Cw(A). This allows us to state the following theorem by Varga which, as previously mentioned, is an

extension of Brualdi’s original theorem [4].

Theorem 3.7 (Varga [17]). Let A ∈ Cn×n. Then the eigenvalues of A are contained in the set

B(A) = ⋃
γ∈C(A)

⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − Aii| �
∏
vi∈γ

r̃i(A)

⎫⎬
⎭ .
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As with the theorems of Gershgorin and Brauer this result can be extended to matrices in Wn×n.

Theorem 3.8. Let G ∈ G. Then σ(G) is contained in the set

BWB(G) = ⋃
γ∈C(Ḡ)

⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − M(Ḡ)ii| �
∏
vi∈γ

r̃i(Ḡ)

⎫⎬
⎭ . (6)

Also, BWB(G) ⊆ BWK(G).

We call BWB(G) the Brualdi-type region of the graph G and the set

BWB(G)γ =
⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − M(Ḡ)ii| �
∏
vi∈γ

r̃i(Ḡ)

⎫⎬
⎭

the Brualdi-type region associated with the cycle γ ∈ C(Ḡ).

Proof. For G ∈ Gn let Ḡ = Ḡ(λ) where for fixed α ∈ C, Ḡ(α) is the graph with adjacency matrix

M(Ḡ, α) ∈ Cn×n. Moreover, for any γ = {v1, . . . , vm} in C(Ḡ) and fixed α ∈ C let γ (α) be the set of

vertices {v1, . . . , vm} in the graph Ḡ(α).
Using this notation, if α ∈ σ(G) then by Lemma 3.2 and Theorem 3.7 there exists a γ ′ ∈ C(Ḡ(α))

such that∏
vi∈γ ′

|α − M(Ḡ, α)ii| �
∏

vi∈γ ′
r̃i(Ḡ, α). (7)

There are then two possibilities, either γ ′ ∈ C(Ḡ) or it is not. If γ ′ ∈ C(Ḡ) then the set of vertices γ ′(α)
is also a cycle in Ḡ in which case Eqs. (6) and (7) imply α ∈ BWB(G). Suppose then that γ ′ /∈ C(Ḡ).

Note that if γ ′ ∈ Cs(Ḡ(α)) then asM(Ḡ, α)ij �= 0 impliesM(Ḡ, λ)ij �= 0 for i �= j then γ ′ ∈ Cs(Ḡ),

which is not possible. Hence, γ ′ ∈ Cw(Ḡ(α)) or γ ′ must be a loop of some vertex vj where the graph

induced by {vj} in Ḡ(α) is a strongly connected component of Ḡ(α). Therefore, Eq. (7) is equivalent to

|α − M(Ḡ, α)jj| � 0 implying α = M(Ḡ, α)jj .

As some cycle γ ∈ C(Ḡ) contains the vertex vj then α is contained in the set⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − M(Ḡ, λ)ii| �
∏
vi∈γ

r̃i(Ḡ, λ)

⎫⎬
⎭

implying that α ∈ BWB(G).
To show that BWB(G) ⊆ BWK(G) we again follow the proof in [17]. Let γ ∈ C(Ḡ). Supposing that

γ ∈ Cw(Ḡ) then γ = {vi} for some vertex vi of G and

BWB(G)γ = {λ ∈ C : |λ − M(Ḡ, λ)ii| = 0}
as vi is the vertex set of some strongly connected component of Ḡ. It follows from (5) that BWB(G)γ ⊆
BWK(G)ij for any 1 � j � n where i �= j. In particular, note that if r̃i(Ḡ, λ) = 0 then λ ∈ BWK(G)ij
for any 1 � j � n where i �= j.

If on the other hand, γ ∈ Cs(Ḡ) then for convenience let γ = {v1, . . . , vp} where p > 1 and note

that

BWB(G)γ =
⎧⎨
⎩λ ∈ C :

p∏
i=1

|λ − M(Ḡ, λ)ii| �
p∏

i=1

r̃i(Ḡ, λ)

⎫⎬
⎭ . (8)

Assuming 0 < r̃i(Ḡ, λ) for all 1 � i � p then for fixed λ ∈ BWB(G)γ it follows by raising both

sides of the inequality in (8) to the (p − 1)st power that

∏
1�i,j�p

i �=j

( |λ − M(Ḡ, λ)ii||λ − M(Ḡ, λ)jj|
r̃i(Ḡ, λ)r̃j(Ḡ, λ)

)
� 1. (9)
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Fig. 3. The Brualdi-type region BWB(G) for G in Fig. 1.

As not all the terms of the product in (9) can exceed unity then for some pair of indices � and k where

1 � �, k � p and � �= k it follows that

|λ − M(Ḡ, λ)kk||λ − M(Ḡ, λ)��| � r̃k(Ḡ, λ)r̃�(Ḡ, λ). (10)

Using the fact that r̃i(Ḡ, λ) � ri(Ḡ, λ) for all 1 � i � n we conclude that λ ∈ BWK(G)k� completing

the proof. �

The Brualdi-type region for the graph G with adjacency matrix (3) is shown in Fig. 3. We note that

BWB(G) = BWK(G) in this particular case.

We now consider Brualdi’s original result which can be stated as follows.

Theorem 3.9 (Brualdi [4]). Let A ∈ Cn×n where Cw(A) = ∅. Then the eigenvalues of A are contained in

the set

br(A) = ⋃
γ∈C(A)

⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − Aii| �
∏
vi∈γ

ri(A)

⎫⎬
⎭ .

As with the theorems of Gershgorin, Brauer, and Varga this result generalizes to matrices with

entries in W as follows.

Theorem 3.10. Let G ∈ G where Cw(G) = ∅. Then σ(G) is contained in the set

BWbr(G) = ⋃
γ∈C(Ḡ)

⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − M(Ḡ)ii| �
∏
vi∈γ

ri(Ḡ)

⎫⎬
⎭ . (11)

Also, BWB(G) ⊆ BWbr(G) ⊆ BWK(G).

Proof. Note for any graph G ∈ G that r̃i(Ḡ) � ri(Ḡ) for all λ ∈ C. Hence,

BWB(G) ⊆ ⋃
γ∈C(Ḡ)

⎧⎨
⎩λ ∈ C : ∏

vi∈γ

|λ − M(Ḡ)ii| �
∏
vi∈γ

ri(Ḡ)

⎫⎬
⎭ .
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Theorem3.8 then implies thatσ(G) is contained in the setBWbr(G). Furthermore, if r̃i(G) is replacedby

ri(G) in the proof of Theorem 3.8 then in particular (10) implies that BWbr(G) ⊆ BWK(G), completing

the proof. �

We will refer to the region BWbr(G), given in (11), as the original Brualdi-type region of G.

4. Isospectral graph reductions

Here we present a method developed in [6] which allows for the reduction of a graph G ∈ G while

maintaining the graph’s spectrum up to some known set. All results in this section can be found in [6]

as well as their proofs except for that of Theorem 4.7 whose proof is contained in this section.

4.1. Graph reductions

In the following if S ⊆ V where V is the vertex set of a graph we let S̄ denote the complement of S

in V . Also if {v1, . . . , vm} is a path in G ∈ G let the vertices v2, . . . , vm−1 of P be its interior vertices.

If P = {v1, . . . , vm} is a cycle where we fix some vi ∈ P then we say P is a cycle from vi to vi where

P\{vi} are its interior vertices.

Recall from Section 2 that if we write the graph G as some triple (V, E, ω) then we are assuming

G ∈ G. With this in mind we give the following definitions.

Definition 4.1. Let G = (V, E, ω). A nonempty vertex set S ⊆ V is a structural set of G if

(i) each cycle of G, that is not a loop, contains a vertex in S; and

(ii) ω(eii) �= λ for each vi ∈ S̄.

Part (i) of Definition 4.1 states that a structural set S of G depends intrinsically on the structure of

G. Part (ii), however, is the formal assumption that the loops of the vertices in S̄, i.e. the complement

of S, do not have weight equal to λ ∈ W[λ]. For G ∈ G we let st(G) denote the set of all structural sets
of the graph G.

Definition 4.2. Suppose G = (V, E, ω) with structural set S = {v1, . . . , vm}. Let Bij(G; S) be the set

of paths or cycles from vi to vj with no interior vertices in S. We call a path or cycle β ∈ Bij(G; S) a

branch of G with respect to S. We let

BS(G) = ⋃
1�i,j�m

Bij(G; S)

denote the set of all branches of G with respect to S.

If β = v1, . . . , vm is a branch of G with respect to S and m > 2 define

Pω(β) = ω(e12)
m−1∏
i=2

ω(ei,i+1)

λ − ω(eii)
. (12)

For m = 1, 2 let Pω(β) = ω(e1m). We call Pω(β) the branch product of β . Note that assumption (ii)

in Definition 4.1 implies that the branch product of any β ∈ BS(G) is always defined.

In the procedurewe term an isospectral graph reductionwe replace the branches Bij(G; S) of a graph
with a single edge. The following definition specifies the weights of these edges.

Definition 4.3. Let G = (V, E, ω) with structural set S = {v1 . . . , vm}. Define the edge weights

μ(eij) =
⎧⎪⎨
⎪⎩

∑
β∈Bij(G;S)

Pω(β) if Bij(G; S) �= ∅
0 otherwise

for 1 � i, j � m. (13)

The graphRS(G) = (S, E, μ) where eij ∈ E if μ(eij) �= 0 is the isospectral reduction of G over S.
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4.2. Sequential reductions

As any reduction RS(G) of a graph G ∈ G is again a graph in G it is natural to consider sequences

of reductions on a graph as well as to what degree a graph can be reduced.

Definition 4.4. For G = (V, E, ω) suppose the sequence of sets S1, . . . , Sm ⊆ V are such that S1 ∈
st(G), R1(G) = RS1(G) and

Si+1 ∈ st(Ri(G)) where RSi+1
(Ri(G)) = Ri+1(G), 1 � i � m − 1.

If this is the case then we say S1, . . . , Sm induces a sequence of reductions on G with final vertex set Sm
and we write Ri(G) = R(G; S1, . . . , Si) for 1 � i � m.

Definition 4.5. Let Gn
π ⊂ Gn be the graphs with weights in the set given by {ω ∈ W : ω =

p/q, deg(p) � deg(q)}. Furthermore, let Gπ = ⋃
n�1 Gn

π .

Remark 1. It is important to note that any graph G where M(G) ∈ Cn×n is a graph in the set Gn
π .

Theorem 4.6. Let G = (V, E, ω) be in Gπ . Then for any nonempty V ⊆ V any sequence of reductions on

G with final vertex set V reduces G to the unique graph RV [G] = (V, E, μ). Moreover, at least one such

sequence always exists.

That is, the final vertex set in a sequence of reductions completely specifies the reduced graph

irrespective of the specific sequence of reductions. The notation RV [G] is intended to emphasize the

fact that V need not be a structural set of G.

To understand how sequential reductions effect the eigenvalues of a graph (or equivalently matrix)

we denote the following. If G = (V, E, ω) is in Gπ where V ⊆ V let G|V be the subgraph of G induced

over the vertex set V . That is,

G|V = (V, E, μ) where E = {eij ∈ E : vi, vj ∈ V} and μ = ω|E .
Theorem 4.7. If G = (V, E, ω) ∈ Gπ where V ⊆ V is nonempty then

det (M(RV [G]) − λI) = det (M(G) − λI)

det (M(G|V̄) − λI)
.

For our purposes, we note that an important interpretation of this theorem is that σ(G) and σ(RV [G])
differ at most by σ(G|V̄).

If A ∈ Cn×n and V ⊆ {1, . . . , n} is nonempty then let A|V̄ be the principle submatrix of A formed

by the rows and columns indexed by V̄ . Theorem 4.7 then implies

det(AV − λI) = det(A − λI)

det(A|V̄ − λI)
,

whereAV is the reductionofAoverV anddet(AV−λI) ∈ W is the ratioof the characteristicpolynomials

of A and AV .
Theorem 4.7 also implies the following useful corollary.

Corollary 1. Let G = (V, E, ω) be a graph in G and S ∈ st(G) be a proper subset of V. Then

det (M(RS(G)) − λI) = det (M(G) − λI)∏
vi∈S̄(ω(eii) − λ)

.
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That is, σ(G) and σ(RS(G)) differ at most by the set

E(G; S) =
⎧⎨
⎩λ ∈ C : ∏

vi∈S̄

(ω(eii) − λ) = 0

⎫⎬
⎭ ,

where this set includes multiplicities. We note that E(G; S) denotes the potential error in estimating

σ(G) by σ(RS(G)). In particular, if M(G) ∈ Cn×n then by reducing G over S we lose any eigenvalues

of M(G) which are the weights of the loops eii for vi ∈ S̄.

4.3. Proofs

In this section we use the following notation. For G = (V, E, ω) in Gn
π and Vk = {v1, . . . , vk} ⊂ V

let Mk = M(RV̄k(G)) andMk = M(G|Vk) for 0 < k < n.

For a proof of Theorem 4.7 we require the following lemma.

Lemma 4.8. For G ∈ Gn
π where n > 1,

det (M(G) − λI) = det (M1 − λI) det
(
M1 − λI

)
.

Proof. If G ∈ Gn
π where n > 1 then V̄1 ∈ st(G). Then Lemma 4.8 follows from Eq. (19) of [6]. �

A proof of Theorem 4.7 is the following.

Proof. For G = (V, E, ω) in Gn
π let V = Vm for some fixed 1 � m < n. Denoting M(G) = M, Lemma

4.8 then implies det(M − λI) = det(M1 − λI) det(M1 − λI). Given that the graph corresponding to

M1 is in Gn−1
π Lemma 4.8 implies that

det (M1 − λI) = det ((M1)1 − λI) det
(
M1

1 − λI
)
.

As (M1)1 = M2 by Theorem 4.6 then det (M1 − λI) = det (M2 − λI) det
(
M1

1 − λI
)
.

By repeated use of both Lemma 4.8 and Theorem 4.6 we have

det(M − λI) = det(Mm − λI)
m∏
i=1

det
(
M1

i−1 − λI
)
, (14)

where M0 = M.

Denoting Mm = M̃ then, by the same argument, the characteristic equation of the submatrix Mm

is given by

det(M̃ − λI) =
m∏
i=1

det
(
M̃1

i−1 − λI
)
, (15)

where M̃0 = M̃. The claim then is that M̃1
i−1 = M1

i−1 for all 1 � i � m. To verify this we proceed by

induction.

First, note that (M0)jk = (M̃0)jk for all 1 � j, k � m as M̃0 is the submatrix of M0 consisting of its

firstm rows and columns. Therefore, assume that the entries (Mi)jk = (M̃i)jk for 1 � j, k � m− i and

i < � � m. For the case i = � it follows from this assumption that

(M�)jk = (M�−1)j+1,k+1 + (M�−1)j+1,1(M�−1)1,k+1

λ − (M�−1)11
(16)

= (M̃�−1)j+1,k+1 + (M̃�−1)j+1,1(M̃�−1)1,k+1

λ − (M̃�−1)11
= (M̃�)jk (17)

for all 1 � j, k � m − �. Hence, (Mi)jk = (M̃i)jk for 1 � j, k � m − i and i � m, verifying the claim

that M̃1
i−1 = M1

i−1 for all 1 � i � m.
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Given that det
(
M̃1

i−1 − λI
)

= det
(
M1

i−1 − λI
)
for 1 � i � m then Eq. (14) together with (15)

imply det(M − λI) = det(Mm − λI) det(M̃ − λI). AsM = M(G), Mm = RV̄ [G], and M̃ = M(RV(G))
the result follows for the specific set V = Vm.

To see that this implies the general result of the theorem let V be any nonempty subset of V . By a

simple relabeling of the vertices in V we may write V as Vm which completes the proof. �

As the graph G|S̄ , for any S ∈ st(G), has only trivial cycles (loops) then each vertex of the graph

is its own strongly connected component. Given that the eigenvalues of a graph are the union of the

eigenvalues of its strongly connected components

σ(G|S̄) =
⎧⎨
⎩λ ∈ C : ∏

vi∈S̄

(ω(eii) − λ) = 0

⎫⎬
⎭ .

This is enough to prove Corollary 1.

5. Main results

In this section we give the main results of this paper. Specifically, we show that a reduced graph

(equivalently reduced matrix) has a smaller Gershgorin and Brauer-type region respectively than the

associated unreduced graph. Hence, the eigenvalue estimates given in Section 3.1 and 3.2 can be

improved via the process of isospectral graph reduction.

However, for both Brualdi and original Brualdi-type regions the situation is more complicated.

For certain reductions the Brualdi-type (original Brualdi-type) region of a graph may decrease in size

similar to Gershgorin and Brauer-type regions. In other cases the Brualdi-type (original Brualdi-type)

region of a graph may increase in size when the graph is reduced. We give an example of both of

these possibilities in Section 5.3. Following this, we present sufficient conditions under which such

estimates improve as the associated graph is reduced (see Theorems 5.4 and 5.5).

5.1. Improving Gershgorin-type estimates

Wefirst consider the effect of reducing a graph on its associated Gershgorin region. Ourmain result

in this direction is the following theorem.

Theorem 5.1 (Improved Gershgorin Regions). Let G = (V, E, ω) where V is any nonempty subset of V.

If G ∈ Gπ then BW�(RV [G]) ⊆ BW�(G).

Gershgorin’s original theorem can be thought of as estimating the spectrum of a graph by con-

sidering the paths of length 1 starting at each vertex. Heuristically, one can view graph reductions as

allowing for better estimates by considering longer paths in the graph through those vertices that have

been removed.

Theorem 5.1 together with Theorem 4.7 have the following corollary.

Corollary 2. If G = (V, E, ω) where V is a nonempty subset of V then

σ(G) ⊆ BW�(RV [G]) ∪ σ(G|V̄).
To understand in which situations BW�(RV [G]) is strictly contained in BW�(G) we consider the

following. For G ∈ Gn
π let

∂BW�(G)i = {λ ∈ C : |λ − M(Ḡ)ii| = ri(Ḡ, λ)} for 1 � i � n.

We note here that the topological boundary of the region BW�(G)i in the complex plane is contained

in the set ∂BW�(G)i for each 1 � i � n. This follows from the continuity of |λ − M(Ḡ)ii| − ri(Ḡ) in
the variable λ. However, if λ ∈ ∂BW�(G)i it may be the case that λ is contained in a neighborhood

entirely within BW�(G)i or λ is not on the topological boundary of ∂BW�(G)i. Hence, the topological

boundary of BW�(G)i is contained in ∂BW�(G)i but this containment may not be strict.
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Theorem 5.2. Let G = (V, E, ω) ∈ Gn
π . Suppose the subset

∂BW�(G)i\
n⋃

j=1,j �=i

BW�(G)j

is an infinite set of points. Then BW�(RV [G]) ⊂ BW�(G) for any V ⊂ V if vi /∈ V .

For G ∈ Gπ there is typically some region BW�(G)i whose boundary is not contained in the union

of the other jth Gershgorin regions. In the nonstandard case this boundary can be a finite set of isolated

points but otherwise, removing vi strictly improves the estimates given by Gershgorin-type regions.

As an example consider the graph G0 ∈ Gπ with adjacency matrix

M(G0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1

0 0 0 1 1

0 1 0 0 0

1 0 0 0 0

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If G1 = R{v1,v2,v3}[G0] and G2 = R{v1,v2}[G1] then one computes

M(G1) =

⎡
⎢⎢⎢⎣

λ+1

λ2
1
λ

λ+1
λ

2λ+1

λ2
1
λ

1
λ

0 1 0

⎤
⎥⎥⎥⎦ and M(G2) =

⎡
⎣ λ+1

λ2
2λ+1

λ2

2λ+1

λ2
λ+1

λ2

⎤
⎦ . (18)

The Gershgorin regions of G0, G1, and G2 are shown in Fig. 4. As

∂BW�(G0)5\
4⋃

j=1

BW�(G0)j and ∂BW�(G1)3\
2⋃

j=1

BW�(G1)j

consist of curves in C this, as can be seen in the figure, implies the strict inclusions

BW�(G2) ⊂ BW�(G1) ⊂ BW�(G0).
In addition, if G1 = G0|{v4,v5} and G2 = G0|{v3,v4,v5} then

M(G1) =
⎡
⎣ 0 0

0 1

⎤
⎦ and M(G2) =

⎡
⎢⎢⎢⎣
0 0 0

0 0 0

1 1 0

⎤
⎥⎥⎥⎦ .

Fig. 4. Left: BW�(G0). Middle: BW�(G1). Right: BW�(G2), where in each the spectrum σ(G0) = {−1, −1, −i, i, 2} is indicated.
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Hence, σ(G1) = σ(G2) = {0} (not including multiplicities). As {0} is contained in both BW�(G1)
and BW�(G2) then both BW�(G1) and BW�(G2) contain σ(G0) by Corollary 2. (Note M(G1) = M(G)
where M(G) is previously given by (3).)

Also, an important implication of Theorem 5.1 is that graph reductions on some G ∈ Gπ can be

used to obtain estimates of σ(G) with increasing precision depending on how much one is willing to

reduce the graph G.

With this in mind, suppose v ∈ V is a vertex of G ∈ Gn
π . Then the graph R{v}[G] = ({v}, E, μ)

consists of a single vertex v and possibly a loop.We note that this is the furthest extent towhich Gmay

be reduced. Moreover, the region BW�(R{v}[G]) = σ(R{v}[G]) is a finite set of points in the complex

plane. As σ(G|{V\v}) consists of at most n − 1 points in the complex plane this can be summarized as

follows.

Remark 2. If the graph G = (V, E, ω) is in Gn
π and v is any vertex in V then σ(G) is contained in the

finite set of points σ(R{V\v}[G]) ∪ σ(R{V\v}(G)). Furthermore, σ(G) and σ(R{V\v}[G]) differ at most

by the set σ(R{V\v}(G)) which contains less than n points.

As an example, let G3 = R{v1}[G0] and G3 = G0|{v2,v3,v4,v5}. Then it follows that σ(G3) =
{−1, −1, −i, i, 2} and σ(G3) = {0, 1.3247, −.6623 ± 0.5622i}. Corollary 2 then implies σ(G0) ⊆
{−1, −i, i, 2, 0, 1.3247, −.6623 ± 0.5622i}. We note that in this particular case σ(G0) = σ(G3) or

the spectrum of the reduced graph and the original are exactly the same.

5.2. Improving Brauer-type estimates

We now consider Brauer-type regions for which we give similar results.

Theorem 5.3 (Improved Brauer Regions). Let G = (V, E, ω). If G ∈ Gπ where V ⊆ V contains at least

two vertices, then BWK(RV [G]) ⊆ BWK(G).

Theorem 5.3 has the following corollary.

Corollary 3. If G = (V, E, ω) where V ⊆ V contains at least two vertices then

σ(G) ⊆ BWK(RV [G]) ∪ σ(G|V̄).
Continuing our example, the Brauer-type regions of G0, G1, and G2 are shown in Fig. 5where by The-

orem 5.3, BWK(G2) ⊆ BWK(G1) ⊆ BWK(G0). Moreover, Theorem 3.6 implies BWK(Gi) ⊆ BW�(Gi)
for i = 0, 1, 2.

We note that if a graph is reduced from n tom vertices then there are
(
n

2

)
−

(
m

2

)
less ijth Brauer-type

regions to calculate. Hence, the number of regions quickly decrease as a graph is reduced.

Fig. 5. Left: BWK(G0). Middle: BWK(G1). Right: BWK(G2), where in each the spectrum σ(G0) = {−1, −1, −i, i, 2} is indicated.
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Fig. 6. Left: BWB(G0). Middle: BWB(G1). Right: BWB(G2), where in each the spectrum σ(G0) = {−1, −1, −i, i, 2} is indicated.

5.3. Brualdi-type estimates

Continuing on to Brualdi-type regions we note that in the example we have been considering it

happens that we have the inclusions BWB(G2) ⊆ BWB(G1) ⊆ BWB(G0) (see Fig. 6). However, it is not

always the case that reducing a graph will improve its Brualdi-type region.

For example, consider the following graph H ∈ Gπ given in Fig. 7. If H is reduced over the sets

S = {v2, v3, v4} and T = {v1, v2, v3} then

M(RS(H)) =

⎡
⎢⎢⎢⎣

1
λ

1
10

0

10
λ

0 1

0 1 0

⎤
⎥⎥⎥⎦ and M(RT (H)) =

⎡
⎢⎢⎢⎣

1
λ

1
λ

0

1 0 1

0 1 0

⎤
⎥⎥⎥⎦ .

In this example we have the strict inclusions (see Fig. 7)

BWB(RT (H)) ⊂ BWB(H) ⊂ BWB(RS(H)).

In particular, as BWB(H) ⊂ BWB(RS(H)) then reducing the graph H over S increases the size of its

Brualdi-type region. That is, graph reductions do not always improve Brualdi-type estimates.

In order to give a sufficient condition under which a Brualdi-type region shrinks as the graph is

reduced we require the following definitions. First, let G = (V, E, ω) where V = {v1, . . . , vn} for

some n � 1 and where G has strongly connected components S1(G), . . . , Sm(G). Define

Escc = {e ∈ E : e ∈ Si(G), 1 � i � m}.
The cycle γ ∈ C(G) is said to adjacent to vi ∈ V if vi /∈ γ and there is some vertex vj ∈ γ such that

eji ∈ Escc .

Second, for any vi ∈ V we denote

A(vi, G) = {γ ∈ C(G) : γ is adjacent to vi}.
Moreover, if C(vi, G) = {γ ∈ C(G) : vi ∈ γ } then let S(vi, G) ⊆ C(vi, G) be the set containing the

following cycles.

For G ∈ Gn
π and fixed 1 � i � n, let γ = {vα1

, . . . , vαm
} be a cycle in C(vi, G) where n � m � 1

and vi = vα1
. If m = 1, that is γ = {vi}, then γ ∈ S(vi, G). Otherwise, supposing 1 < m � n relabel

the vertices of G such that vαj
is vj for 1 � j � m and denote this relabeled graph by Gr = (Vr, Er, ωr).

Then γ ∈ S(vi, G) if ej1 /∈ Er for 1 < j < m and emk /∈ Esccr for m < k � n.

As it will be needed later, we furthermore define the set Sbr(vi, G) to be the set of cycles in S(vi, G)
where γ ∈ Sbr(vi, G) if ej1 /∈ Er for 1 < j < m and emk /∈ Er for m < k � n.

With this in place we state the following theorem.

Theorem 5.4 (Improved Brualdi Regions). Let G = (V, E, ω)where G ∈ Gπ and V contains at least two

vertices. If v ∈ V such that both A(v, G) = ∅ and C(v, G) = S(v, G) then BWB(RV\v(G)) ⊆ BWB(G).
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Fig. 7. Top Left: BWB(H). Top Middle: BWB(RS (H)). Top Right: BWB(RT (H)) where S = {v2, v3, v4} and T = {v1, v2, v3}. σ(H)

is indicated.

That is, if the vertex v is adjacent to no cycle in C(G) and each cycle passing through v is in S(v, G)
then removing this vertex improves the Brualdi-type region of G. We note that for the graph H in

Fig. 7 the set A(v1,H) = {v2, v3} �= ∅. Hence, Theorem 5.4 does not apply to the reduction of H
over S .

However, the vertex v4 has the property that A(v4,H) = ∅ as well as S(v4,H) = C(v4,H).
Therefore, reducing H over the vertex set T = {v1, v2, v3} improves the Brualdi-type region of this

graph which can be seen on the upper right hand side of Fig. 7.

As an example for why the condition C(v, G) = S(v, G) is necessary in Theorem 5.4 consider the

following. Let J ,RS(J ) ∈ G be the matrices given by

M(J ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and M(RS(J )) =

⎡
⎢⎢⎢⎣

0 1 0

1
λ

0 1

1
λ

0 0

⎤
⎥⎥⎥⎦ ,

whereS = {v2, v3, v4}. In this caseBWB(RS(J )) � BWB(J ).Wenote thatA(v1,J ) = ∅butS(v1,J )
consists of the cycle {v1, v2, v3} whereas the cycle set C(v1,J ) = {{v1, v2, v3}, {v1, v2, v3, v4}}. That
is, C(v1,J ) �= S(v1,J ).

Observe that graph reductions can increase, decrease or maintain the number of cycles a graph has

in its cycle set. For instance the graph G0 in our previous example has 12 cycles in its cycle set whereas

G1 has 3 and G2 has 1 (see Fig. 6). As an alternate example let P, RU(P) ∈ G with adjacency matrices

given by

M(P) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1

1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and M(RU(P)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1
λ

0 1
λ

0

0 0 0 1

1
λ

0 1
λ

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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where U = {v1, v2, v3, v4}. Here C(P) = {{v1, v2, v5}, {v3, v3, v5}} whereas C(RU(P)) = {{v1, v2},{v3, v4}, {v1, v2, v3, v4}}. That is, reducing P overU increases the number of cycles needed to compute

the associated Brualdi-type region from2 to 3. This is in contrast to Gershgorin and Brauer type regions

which always decrease in number as the associated graph is reduced.

In thecaseofBrualdi’s original result (Theorem3.10)wemustdealwith the followingcomplications.

First, for a given graph G ∈ Gπ where Cw(G) = ∅, it may not be the case that Cw(RV\v(G)) =
∅. Furthermore, as the edges between strongly connected components play a role in the associated

eigenvalue inclusion region (see (11)) this also complicates whether or not estimates given by the

original Brualdi-type region improves as the graph is reduced. However, it is possible to give sufficient

conditions under which this is the case.

Theorem 5.5 (Improved Original Brualdi Regions). Let G = (V, E, ω) be inGπ and v ∈ V. IfA(v, G) =
∅, C(v, G) = Sbr(v, G) and both of the sets Cw(G) and Cw(RV\v(G)) are empty then BWbr(RV\v(G)) ⊆
BWbr(G).

5.4. Proofs

In order to prove the theorems in Section 5.1–5.3 we will need to evaluate functions at some fixed

λ ∈ C. In each case we consider such functions first as elements in W with common factors removed

then evaluated at the value λ. In fact most of these functions, once common factors are removed, will

be polynomials in C[λ].
Moreover, to simplify notation we will use the following. For G = (V, E, ω) where G ∈ Gn

π and

n � 2 first note that the vertex set V\{v1} ∈ st(G). Therefore, let RV\{v1}(G) = R1, Lk(G, λ) = Lk ,

Lk(R1, λ) = L1k , λ − ωkk = λkk and M(G, λ)k� = ωk�. Also, let ωk� = pk�/qk� for pk�, qk� ∈ C[λ]
where we assume qk� = 1 if ωk� = 0. Lastly, set Rk(G) = ∑

�=1,��=k |ωk�Lk|.
Before proceeding we state the following lemma.

Lemma 5.6. If G ∈ Gn
π for n � 2 then q11qi1L

1
i = (qi1(q11λ − p11))

n−1 L1Li.

Proof. First, note that

M(R1, λ)ij = pi1p1jqijq11 + qi1q1jpij(q11λ − p11)

qi1q1jqij(q11λ − p11)
, 2 � i, j � n

from which L1i =
n∏

j=2

qi1q1jqij(q11λ − p11). Therefore,

L1i = (qi1(q11λ − p11))
n−1

n∏
j=2

q1j

n∏
j=2

qij. (19)

As Lk =
n∏

j=1

qkj for 1 � k � n the result follows by multiplication of q11qi1. �

A proof of Theorem 5.1 is the following.

Proof. Suppose that λ ∈ BW�(R1)i for fixed λ ∈ C and 2 � i � n. As each M(R1)ij = ωij +
ωi1ω1j/λ11 for 2 � j � n then∣∣∣∣(λii − ωi1ω1i

λ11

)L1i

∣∣∣∣ �
n∑

j=2,j �=i

∣∣∣∣(ωij + ωi1ω1j

λ11

)L1i

∣∣∣∣ .
Multiplying both sides of this inequality by |λ11q11qi1| implies, via Lemma 5.6, that

Qi(G)|λ11L1λiiLi − ωi1ω1iL1Li| � Qi(G)
n∑

j=2,j �=i

|(ωijλ11 + ωi1ω1j)L1Li|,
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where Qi(G) = | (qi1(q11λ − p11)) |n−1. If Qi(G) �= 0 then, by the triangle inequality,

|λ11L1λiiLi| − |ωi1ω1iL1Li| �
n∑

j=2,j �=i

|λ11L1ωijLi| +
n∑

j=2,j �=i

|ωi1Liω1jL1|.

Therefore,

|λ11L1λiiLi| −
n∑

j=1,j �=i

|λ11L1ωijLi| �
n∑

j=2

|ωi1ω1jL1Li| − |ωi1Liλ11L1|.

By factoring

|λ11L1| (|λiiLi| − Ri(G)) � |ωi1Li| (R1(G) − |λ11L1|) . (20)

If we assume λ /∈ BW�(G)i ∪ BW�(G)1 then both

|λiiLi| − Ri(G) > 0 and R1(G) − |λ11L1| < 0.

These inequalities together with (20) in particular imply that λ11L1 = 0. However, this in turn implies

that λ ∈ BW�(G)1, which is not possible.

Hence, λ ∈ BW�(G)i ∪ BW�(G)1 unless Qi(G) = 0. Supposing then that this is the case, note that

if Lij =
n∏

�=1,��=j

qi� for 1 � i, j � n then

BW�(G)k =
⎧⎨
⎩λ ∈ C : |Lkk(qkkλ − pkk)| �

n∑
j=1,j �=k

|pkjLkj|
⎫⎬
⎭ for 1 � k � n. (21)

Under the assumptionQi(G) = (qi1(q11λ − p11))
n−1 = 0note that if qi1 = 0 then Lii = 0 implying

λ ∈ BW�(G)i. If q11λ − p11 = 0 then λ ∈ BW�(G)1 again by (21).

Therefore, BW�(R1)i ⊆ BW�(G)1 ∪ BW�(G)i implying BW�(R1) ⊆ BW�(G). The theorem

follows by repeated use of Theorem 4.6 as it is always possible to sequentially remove single vertices

of a graph in order to remove an arbitrary vertex set V̄ . �

We now give a proof of Theorem 5.2.

Proof. Let λ ∈ C be fixed such that

λ ∈ ∂BW�(G)1\
n⋃

j=2

BW�(G)j. (22)

Then both

|(λ11)L1| = R1(G); and (23)

|(λii)Li| > Ri(G), for all 1 < i � n. (24)

Supposing λ ∈ BW�(R1)i for some fixed 1 < i � n and that Qi(G) �= 0 then (20) holds. Combining

(20) with (23) it follows that

|λ11L1| (|λiiLi| − Ri(G)) � 0.

Moreover, as |λiiLi| > Ri(G) from Eq. (24) then this together with the previous inequality imply that

λ11L1 must be zero. However, given that λ11L1 is a nonzero polynomial then this happens in at most

finitely many values of λ ∈ C. Similarly, the polynomial Qi(G) = 0 on only a finite set of C, hence the

assumption that

∂BW�(G)1\
n⋃

j=2

BW�(G)j
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is an infinite set in the complex plane yields a contradiction to assumption (22) for infinitely many

points in this set. Hence, the result follows in the case that {v1} = V̄ . By sequentially removing single

vertices of V̄ from the graph G repeated use of Theorem 4.6 completes the proof. �

Next we give a proof of Theorem 5.3.

Proof. Let G = (V, E, ω) where G ∈ Gn
π and n � 3. The claim is that

BWK(R1)ij ⊆ BWK(G)1i ∪ BWK(G)1j ∪ BWK(G)ij (25)

for any pair 2 � i, j � nwhere i �= j.

To see this let λ ∈ BWK(R1)ij for fixed i and j from which it follows that∣∣∣∣
(
λii − ωi1ω1i

λ11

)
L1i

∣∣∣∣
∣∣∣∣
(
λjj − ωj1ω1j

λ11

)
L1j

∣∣∣∣

�

⎛
⎜⎜⎜⎝

n∑
�=2
��=i

∣∣∣∣
(
ωi� + ωi1ω1�

λ11

)
L1i

∣∣∣∣
⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

n∑
�=2
��=j

∣∣∣∣
(
ωj� + ωj1ω1�

λ11

)
L1j

∣∣∣∣
⎞
⎟⎟⎟⎠ .

(26)

Multiplying both sides of (26) by |λ11q11qi1| and |λ11q11qj1|, Lemma 5.6 implies

∏
k=i,j

Qk(G)|λkkλ11L1Lk − ωk1ω1kL1Lk| �
∏
k=i,j

Qk(G)

⎛
⎜⎜⎜⎝

n∑
�=2
��=k

| (ωk�λ11 + ωk1ω1�) L1Lk|

⎞
⎟⎟⎟⎠ .

Assuming for now that Qi(G)Qj(G) �= 0 then by the triangle inequality

∏
k=i,j

(|λ11L1λkkLk| − |ω1kL1ωk1Lk|) �
∏
k=i,j

⎛
⎜⎜⎜⎝

n∑
�=2
��=k

|λ11L1ωk�Lk| +
n∑

�=2
��=k

|ω1�L1ωk1Lk|

⎞
⎟⎟⎟⎠ . (27)

Suppose λ /∈ BWK(G)1i ∪ BWK(G)1j . Then |λ11L1||λkkLk| > R1(G)Rk(G) for k = i, j. Moreover, if

|λ11L1| � R1(G) then from (27)

∏
k=i,j

(R1(G)Rk(G) − |ω1kL1ωk1Lk|) <
∏
k=i,j

⎛
⎜⎜⎜⎝R1(G)

n∑
�=2
��=k

|ωk�Lk| +
n∑

�=2
��=k

|ωk1L1ω1�Lk|

⎞
⎟⎟⎟⎠ . (28)

From the fact that

R1(G)Rk(G) − |ωk1L1ω1kLk| = R1(G)
n∑

�=2
��=k

|ωk�Lk| +
n∑

�=2
��=k

|ωk1L1ω1�Lk| (29)

it follows that (28) cannot hold. Therefore, if λ ∈ BWK(R1)ij , Qi(G)Qj(G) �= 0, and λ /∈ BWK(G)1i ∪
BWK(G)1j then |λ11L1| > R1(G).

Proceeding as before, we assume again that λ ∈ BWK(R1)ij , so in particular (26) holds. Note if

λ11 = 0 then λ ∈ BWK(G)1i ∪ BWK(G)1j and claim (25) holds. In what follows we assume then that

λ11 �= 0.Moreover, ifQi(G)Qj(G) �= 0 thenmultiplying both side of (26) by |λ11q11qi1| and |λiiLiq11qj1|
yields
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(|λ11L1λiiLi| − |ω1iL1ωi1Li|)
(∣∣λiiLiλjjLjL1

∣∣ −
∣∣∣∣∣ω1jL1ωj1Lj

λiiLi

λ11

∣∣∣∣∣
)

�

⎛
⎜⎜⎜⎝

n∑
�=2
��=i

|λ11L1ωi�Li| +
n∑

�=2
��=i

|ω1�L1ωi1Li|

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

n∑
�=2
��=j

|λiiLiωj�LjL1| +
n∑

�=2
��=j

∣∣∣∣∣ω1�L1ωj1Lj
λiiLi

λ11

∣∣∣∣∣
⎞
⎟⎟⎟⎠
(30)

by use of the triangle inequality.

Supposing that λ /∈ BWK(G)1i ∪ BWK(G)ij then both R1(G)Ri(G) < |λ11L1λiiLi| and Ri(G)Rj(G) <
|λiiLiλjjLj|. This together with (30) implies

(R1(G)Ri(G) − |ω1iL1ωi1Li|)
(
Ri(G)Rj(G)L1 −

∣∣∣∣∣ω1jL1ωj1Lj
λiiLi

λ11

∣∣∣∣∣
)

<

⎛
⎜⎜⎜⎝

n∑
�=2
��=i

|λ11L1ωi�Li| +
n∑

�=2
��=i

|ω1�L1ωi1Li|

⎞
⎟⎟⎟⎠

×
(
|λiiLiL1| (

Rj(G) − |ωj1Lj|) +
∣∣∣∣∣ωj1Lj

λiiLi

λ11

∣∣∣∣∣ (
R1(G) − |ω1jL1|)

)
.

If |λiiLi| � Ri(G) then

(R1(G)Ri(G) − |ω1iL1ωi1Li|)
(
Ri(G)Rj(G)L1 −

∣∣∣∣∣ω1jL1ωj1Lj
λiiLi

λ11

∣∣∣∣∣
)

<

⎛
⎜⎜⎜⎝

n∑
�=2
��=i

|λ11L1ωi�Li| +
n∑

�=2
��=i

|ω1�L1ωi1Li|

⎞
⎟⎟⎟⎠

×
(
Ri(G)|L1|(Rj(G) − |ωj1Lj|) +

∣∣∣∣∣ωj1Lj
λiiLi

λ11

∣∣∣∣∣ (
R1(G) − |ω1jL1|)

)
. (31)

The claim then is that if λ /∈ BWK(G)1i ∪ BWK(G)1j , which implies |λ11L1| > R1(G) by the above,

then the second terms in each product of (31) have the relation

Ri(G)Rj(G) −
∣∣∣∣∣ω1jL1ωj1Lj

λiiLi

λ11

∣∣∣∣∣ � Ri(G)|L1| (
Rj(G) − |ωj1Lj|) +

∣∣∣∣∣ωj1Lj
λiiLi

λ11

∣∣∣∣∣ (
R1(G) − |ω1jL1|) .

(32)

To see this note that this is true if and only if

Ri(G)|ωj1LjL1| � |ωj1LjλiiLi|R1(G)

|λ11| .

As this is true if and only if |λ11L1|Ri(G) � R1(G)|λiiLi| this verifies that (32) holds since both Ri(G) �
|λiiLi| and |λ11L1| > R1(G). Therefore, Eqs. (31) and (32) together imply that

R1(G)Ri(G) − |ω1iL1ωi1Li| <
n∑

�=2
��=i

|λ11L1ωi�Li| +
n∑

�=2
��=i

|ω1�L1ωi1Li| . (33)
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Rewriting the right-hand side of this inequality in terms of Rk(G) (for k = 1, i) yields

R1(G)Ri(G) < |λ11L1|Ri(G) − |λ11L1ωi1Li| + |ωi1Li|R1(G).

This in turn implies that Ri(G) (R1(G) − |λ11L1|) < |ωi1Li| (R1(G) − |λ11L1|). However, it then follows

that

Ri(G) =
n∑

�=1,��=i

|ωi�Li| < |ωi1Li|,

which is not possible.

Therefore, if bothQi(G)Qj(G) �= 0 andλ /∈ BWK(G)1i∪BWK(G)1j∪BWK(G)ij then |λiiLi| > Ri(G).
Moreover, as this argument is symmetric in the indices i and j then it can be modified to show that if

both Qi(G)Qj(G) �= 0 and λ /∈ BWK(G)1i ∪ BWK(G)1j ∪ BWK(G)ij then |λjjLj| > Rj(G).
With this in mind, by multiplying (26) by |q11qi1| and |q11qi1| and assuming once again that

Qi(G)Qj(G) �= 0, then the triangle inequality implies

∏
k=i,j

(
|λkkLk||L1| −

∣∣∣∣ωk1ω1k

λ11

L1Lk

∣∣∣∣
)

�
∏
k=i,j

⎛
⎜⎜⎜⎝

n∑
�=1
��=k

|ωk�Lk||L1| − |ωk1LkL1| +
n∑

�=2

∣∣∣∣ωk1ω1�

λ11

LkL1

∣∣∣∣ −
∣∣∣∣ωk1ω1k

λ11

LkL1

∣∣∣∣
⎞
⎟⎟⎟⎠ . (34)

Hence, if λ /∈ BWK(G)1i ∪BWK(G)1j ∪BWK(G)ij then from the previous calculations Rk(G) < |λkkLk|
for k = 1, i, and j implying together with (34) that

∏
k=i,j

(
Rk(G)|L1| −

∣∣∣∣ωk1ω1k

λ11

L1Lk

∣∣∣∣
)

<
∏
k=i,j

(
Rk(G)|L1| − |ωk1LkL1| + |ωk1Lk|R1(G)

|λ11| −
∣∣∣∣ωk1ω1k

λ11

LkL1

∣∣∣∣
)

.

Hence, for either k = i or k = j it follows that

−|ωk1LkL1| + |ωk1Lk|R1(G)

|λ11| > 0.

Therefore, R1(G) > |λ11L1| which is not possible. As this implies that λ /∈ BWK(G)1i ∪ BWK(G)1j ∪
BWK(G)ij , unless Qi(G)Qj(G) = 0 suppose that this product is in fact equal to zero.

In this case note that by modifying Eq. (21)

BWK(G)ij =
⎧⎨
⎩λ ∈ C : ∏

k=i,j

|Lkk(qkkλ − pkk)| �
∏
k=i,j

⎛
⎝ n∑

j=1,j �=k

|pkjLkj|
⎞
⎠

⎫⎬
⎭

for 1 � k � n. Hence, if Qk(G) = 0 for either k = i, j then by calculations analogous to those given

in the proof of Theorem 5.1 it follows that λ ∈ BWK(G)ik . This verifies the claim given in (25). Hence,

Theorem 5.3 holds for V = V − {v1}.
As in the previous proofs, Theorem 4.6 can be invoked to generalize this result to the reduction over

the set V ⊆ V . �

In order to prove Theorem 5.4 we first give the following lemma.

Lemma 5.7. Let G ∈ Gn
π for n � 2 and suppose bothA(v1, G) = ∅ and C(v1, G) = S(v1, G). Moreover,

let γ = {v1, . . . , vm} and γ ′ = {v2, . . . , vm} for m � 2. If γ ∈ C(G) and γ ′ =∈ C(R1(G)) then

BWB(R1(G))γ ′ ⊆ BWB(G).
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Proof. Suppose first that the hypotheses of the lemma hold. We then make the observation that the

edges e ∈ Escc are not used to calculate to BWB(G). Furthermore, any cycle of G is contained in exactly

one strongly connected component of this graph. This implies that the Brualdi-type region of the

graph is the union of the Brualdi-type regions of its strongly connected components. Therefore, we

may without loss in generality assume that G consists of a single strongly connected component.

Suppose that both γ = {v1, . . . , vm} and δ = {v1, vm} are cycles in C(v1, G) for some 1 < m � n.

Note the fact that γ ∈ C(v1, G) implies, in particular, that γ ′ = {v2, . . . , vm} is a cycle in C(R1).
From the assumption that v1 has no adjacent cycles it follows that ωmi = 0 for 1 < i � m

since otherwise {vi, vi+1, . . . , vm} ∈ A(v1, G). Also, as γ ∈ C(v1, G) = S(v1, G) then ωi1 = 0 for

1 < i < m as well as ωmi = 0 for m < i � n as G is assumed to have one strongly connected

component. Therefore,

BWB(G)γ =
⎧⎨
⎩λ ∈ C :

m∏
i=1

|λiiLi| � |ωm1Lm|
m−1∏
i=1

Ri(G)

⎫⎬
⎭ , (35)

BWB(G)δ = {λ ∈ C : |λ11L1||λmmLm| � |ωm1Lm|R1(G)} . (36)

Suppose then that λ ∈ BWB(R1)γ ′ . Then

∣∣∣∣
(
λmm − ωm1ω1m

λ11

)
L1m

∣∣∣∣
m−1∏
i=2

|λiiLi| �
m−1∑
i=2

∣∣∣∣ωm1ω1i

λ11

L1m

∣∣∣∣
m−1∏
i=2

Ri(G). (37)

Here, L1i = Li for 1 < i < m since for each such i the edge ei1 /∈ E.

Multiplying both sides of (37) by |q11q1mλ11| along with the triangle inequality implies

Qm(G) (|λ11L1λmmLm| − |ω1mL1ωm1Lm|)
m−1∏
i=2

|λiiLi|

� Qm(G) (|ωm1Lm|R1(G) − |ω1mL1ωm1Lm|)
m−1∏
i=2

Ri(G). (38)

Now by use of Eq. (21) we have

BWB(G)δ =
⎧⎨
⎩λ ∈ C : ∏

k=1,m

|Lkk(qkkλ − pkk)| �
∏

k=1,m

⎛
⎝ n∑

j=1,j �=k

|pkjLkj|
⎞
⎠

⎫⎬
⎭ .

Hence, if Qm(G) = 0 then by calculations analogous to those given in the proof of Theorem 5.1 it

follows that λ ∈ BWB(G)δ . Therefore, assume that Qm(G) �= 0.

Then if
∏m−1

i=2 Ri(G) = 0 it follows from (38) that either
∏m−1

i=2 |λiiLi| = 0 or that |λ11L1λmmLm| −
|ωm1L1ω1mLm| = 0. If thefirst is the case thenλ ∈ BWB(G)γ . If the latter is the case thenλ ∈ BWB(G)δ
since |ω1mL1| � R1(G).

If both
∏m−1

i=2 Ri(G) �= 0 and |λ11L1λmmLm| − |ωm1L1ω1mLm| �= 0 then (38) implies∏m−1
i=2 |λiiLi|∏m−1
i=2 Ri(G)

� |ωm1Lm|R1(G) − |ω1mL1ωm1Lm|
|λ11L1λmmLm| − |ωm1L1ω1mLm| . (39)

Note that if

|ωm1Lm|R1(G) − |ω1mL1ωm1Lm|
|λ11L1λmmLm| − |ωm1L1ω1mLm| � |ωm1Lm|R1(G)

|λ11L1λmmLm|
then it follows from (39) together with (35) that λ ∈ BWB(G)γ . On the other hand, if this in-

equality does not hold then |λ11L1||λmmLm| < |ωm1Lm|R1(G) implying λ ∈ BWB(G)δ . Therefore,
BWB(R1)γ ′ ⊆ BWB(G)γ ∪ BWB(G)δ ⊆ BWB(G).
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Conversely, if δ /∈ C(G) thenω1mL1 = 0. Eq. (38) together with (35) then imply that BWB(R1)γ ′ ⊆
BWB(G)γ . Hence, BWB(G)γ ′ ⊆ BWB(G). �

We now give a proof of Theorem 5.4.

Proof. First, as in the previous proof, suppose G consists of a single strongly connected component.

Moreover, for the vertex v1 ∈ V suppose both A(v1, G) = ∅ and C(v1, G) = S(v1, G). Also let

γ ′ = {v2, . . . , vm} be a cycle in C(R1) for some 1 < m � n.

As A(v1, G) = ∅, if γ ′ ∈ C(G) thenM(G, λ)ij = M(R1, λ)ij for 2 � i � m and 1 � j � n since γ ′
would otherwise be adjacent to v1. From this it follows that BWB(R1)γ ′ = BWB(G)γ ′ ⊆ BWB(G).

On the other hand, if γ ′ /∈ C(G) then at least one edge of the form ei−1,i for 3 � i � m or em2 is not

in E. If this is the case then without loss in generality assume for notational simplicity that em2 /∈ E.

Furthermore, let

I = {i : ei−1,i /∈ E, 3 � i � m} ∪ {2}.
We give the set I the ordering I = {i1, . . . , i�} such that ij < ik if and only if j < k. Then for each

1 � j � � the ordered sets

γj = {v1, vij , vij+1, . . . , vjα } (40)

are cycles in C(v1, G) where jα = ij+1 − 1 and �α = m. Moreover, by removing the vertex v1 from G

it follows from (40) that each of the ordered sets

γ ′
j = {vij , vij+1, . . . , vjα }

are cycles in C(R1). As bothA(v1, G) = ∅ and C(v1, G) = S(v1, G), Lemma 5.7 therefore implies that

�⋃
j=1

BWB(R1)γ ′
j
⊆ BWB(G).

The claim then is that the region

BWB(R1)γ ′ ⊆
�⋃

j=1

BWB(R1)γ ′
j
. (41)

To see this, let λ1
ii = (λ − ωii − ωi1ω1i

λ11

)L1i and R1i =
n∑

j=2,j �=i

|M(R̄1, λ)ij|. Then

BWB(R1)γ ′ =
⎧⎨
⎩λ ∈ C :

m∏
i=2

|λ1
ii| �

m∏
i=2

R1i

⎫⎬
⎭ and (42)

BWB(R1)γ ′
j
=

⎧⎨
⎩λ ∈ C :

m∏
i∈γj

|λ1
ii| �

m∏
i∈γj

R1i

⎫⎬
⎭ for 1 � j � �. (43)

As the vertex set γ ′ is the disjoint union of the vertex sets of the cycles γ ′
j then the assumption that

λ /∈ BWB(R1)γ ′
j
for each 1 � j � � implies λ /∈ BWB(R1)γ ′ by comparing the product of (43) over

all 1 � j � � to (42). This verifies the claim given in (41), which implies that BWB(R1)γ ′ ⊆ BWB(G).

As γ ′ was an arbitrary cycle in C(R1) then it follows that BWB(R1) ⊆ BWB(G). This completes the

proof. �
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A proof of Theorem 5.5 is the following.

Proof. If the conditions given in the theorem hold for v = v1 then both BWbr(G) and BWbr(R1) exist
since it is assumed that Cw(G) = ∅ and Cw(R1) = ∅. Moreover, if S(v1, G) is replaced by Sbr(v1, G)
and BWB(·) by BWbr(·) then the conclusions of Lemma 5.7 hold by the same proof following the

lemma with the exception that G is not assumed to have a single strongly connected component. As

the same holds for the proof of Theorem 5.4 the result follows. �

6. Some applications

In this sectionwe discuss some natural applications of using graph reductions to improve estimates

of the spectra of certain graphs. Our first application deals with estimating the spectra of the Laplacian

matrix of a given graph. Following this we give a method for estimating the spectral radius of a matrix

using graph reductions. Last, we use the results of Theorem 5.2 as well as some structural knowledge

of a graph to identify particularly useful structural sets.

6.1. Laplacian matrices

It is possible to reduce not only the graph G but also the graphs associated with both the combina-

torial Laplacian matrix and the normalized Laplacian matrix of G. Such matrices are typically defined

for undirected graphswithout loops or weights but this definition can be extended to graphs inG (see

remark 3 below). However, here we give the standard definitions as these are of interest in their own

right (see [7,8]).

Let G = (V, E) be an unweighted undirected graphwithout loops, i.e. a simple graph. If G has vertex

set V = {v1, . . . , vn} and d(vi) is the degree of vertex vi then its combinatorial Laplacian matrix ML(G)
of G is given by

ML(G)ij =
⎧⎪⎨
⎪⎩
d(vi) if i = j

−1 if i �= j and vi is adjacent to vj

0 otherwise.

On the other hand the normalized Laplacian matrix ML(G) of G is defined as

ML(G)ij =
⎧⎪⎪⎨
⎪⎪⎩
1 if i = j and d(vj) �= 0

−1√
d(vi)d(vj)

if vi is adjacent to vj

0 otherwise.

The interest in the eigenvalues ofML(G) is that σ(ML(G)) gives structural information about G (see

[7]). On the other hand knowing σ(ML(G)) is useful in determining the behavior of algorithms on the

graph G among other things (see [8]).

Let L(G) be the graph with adjacency matrix ML(G) and similarly let L(G) be the graph with ad-

jacency matrix ML(G). Since both L(G),L(G) ∈ Gπ either may be reduced over any subset of their

respective vertex sets.

For example if H ∈ Gπ is the simple graph with adjacency matrix

M(H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 1 1

0 0 0 1 1

0 1 1 0 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



1454 L.A. Bunimovich, B.Z. Webb / Linear Algebra and its Applications 437 (2012) 1429–1457

Fig. 8. Left: BW� (L(H)). Right: BW� (RS(L(H))), where in each the spectrum σ (L(H)) = {0, 1, 2, 4, 5} is indicated.

then the graph L(H), has the structural set S = {v1, v2, v3, v4}. Reducing over this set yieldsRS (L(H))
where

M (RS(L(H))) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ−3
λ−4

1
λ−4

1
λ−4

1
λ−4

1
λ−4

2λ−7
λ−4

1
λ−4

−λ+5
λ−4

1
λ−4

1
λ−4

2λ−7
λ−4

−λ+5
λ−4

1
λ−4

−λ+5
λ−4

−λ+5
λ−4

3λ−11
λ−4

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fig. 8 shows the Gershgorin regions for L(H) as well as RS(L(H)).
Note that the adjacencymatrix ofH is symmetric so its eigenvaluesmust be real numbers.With this

in mind we note that the Gershgorin-type region associated with simple graphs and their reductions

can be reduced to intervals of the real number line.

Remark 3. It is possible to generalize ML(G) to any G ∈ G if G has no loops and n vertices by setting

ML(G)ij = −M(G)ij for i �= j and ML(G)ii = ∑n
j=1,j �=i M(G)ij . This generalization is consistent with

what is done for weighted digraphs in [18] for example.

6.2. Estimating the spectral radius of a matrix

For G ∈ Gπ the spectral radius of G, denoted ρ(G), is the maximum among the absolute values of

the elements in σ(G) i.e.

ρ(G) = max
λ∈σ(G)

|λ|.
Formany graphs G ∈ Gπ it is possible to find some structural set S ∈ st(G) such that each vertex of

S̄ has no loop. By Corollary 1, if S is such a set then σ(G) and σ(RS(G)) differ at most by E(G; S) = {0}
implying that ρ(G) = ρ(RS(G)).

For example, in the graph K shown in Fig. 9 the vertices v2, v4, v6 are the vertices of K without

loops. As {v1, v3, v5} ∈ st(K) it follows that ρ(K) = ρ(R{v1,v3,v5}(K)).
By employing the region BW�(K)we can estimate ρ(K) � 3. However, using BW�(R{v1,v3,v5}(K))

our estimate improves to ρ(K) � 2 (see the top left and right of Fig. 9).
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Fig. 9. Top Left: BW�(K) from which ρ(K) � 3. Top Right: BW�(R{v1,v2,v3}(K)) from which ρ(K) � 2.

Fig. 10. Left: The graph G. Right: BW�(G).

It should be noted that for a given graph there is often no unique set of vertices without loops

which is simultaneously a structural set. Therefore, there may be many ways to reduce a graph such

that at each step only vertices without loops are removed ensuring, as above, that the spectral radius

is maintained.



1456 L.A. Bunimovich, B.Z. Webb / Linear Algebra and its Applications 437 (2012) 1429–1457

Fig. 11. Left:RV\{v1}(G). Right: BW�(RV\{v1}(G)).

6.3. Targeting specific structural sets

Here we consider reducing graphs over specific structural sets in order to improve eigenvalue

estimates when some structural feature of the graph is known. To do so consider G = (V, E, ω)where

V = {v1, . . . , vn}.
If the sets BW�(G)i for 1 � i � n are known or can be estimated by some structural knowledge

of G then it is possible to make decisions on which structural sets to reduce over. That is, it may be

possible to identify structural sets V ⊂ V such that vi /∈ V and

∂BW�(G)i �
⋃
j �=i

BW�(G)j.

If this can be done, Theorem 5.2 implies that a strictly better estimate of σ(G) can be achieved by

reducing over V .
Forexampleconsider thegraphG = (V, E, ω) in the lefthandsideofFig.10whereV = {v1, . . . , vn}

for somen > 5. If it is known for instance thatG is a simplegraphsuch thatd(v1) = 4,d(v2) = d(v3) =
d(v4) = d(v5) = 3 and d(vi) ∈ {0, 1, 2, 3} for all 6 � i � n then the sets BW�(G)i are each discs of

radius either 0, 1, 2, 3 or 4 (see right hand side of Fig. 10). Moreover, as

∂BW�(G)1 �
n⋃

i=2

BW�(G)i = {λ ∈ C : |λ| = 4}

then Theorem 5.2 implies that RV\{v1}(G) has a strictly smaller Gershgorin-type region than does G

which can be seen in Fig. 11. Considering the fact that nmay be quite large this example is intended to

illustrate that eigenvalues estimates can be improved with a minimal amount of effort if some simple

structural feature(s) of the graph are known.

However, it should be noted that as a graph is reduced its weights can contain increasingly larger

powers of λ. Hence, the more a graph is reduced the more complicated it can become to compute

the eigenvalue regions associated to it. Fortunately, there is a fairly simple bound for how large these

powers of λ can become.

Indeed, let G = (V, E, ω) such that M(G) ∈ Cn×n. For V ⊂ V let the entries M (RV [G])ij = pij/qij
where pij, qij ∈ C[λ]. Then

deg(pij) � deg(qij) � |V̄| < n.
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For instance, G1 and G2 given in (18) are examples of graphs that have been reduced from 5 to 3 and 2

vertices respectively. Hence, the largest power that λ can be raised to in any entry of either M(G1) or
M(G2) is 2 or 3 respectively. In fact, the largest power of λ inM(G2) is only 2.

That is, the Gershgorin, Brauer, and Brualdi-type regions become computationally harder to com-

pute as a graph (equivalentlymatrix) is reduced but onlymarginally so.Moreover, this is offset to some

degree by the fact that there are less Gershgorin and Brauer and often Brualdi type regions to compute

for reduced graphs (matrices).

7. Concluding remarks

The major goal of this paper is to demonstrate that isospectral graph reductions can be used to

improve each of the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and the more recent

extension of Brualdi’s theorem by Varga. Of major importance is the fact that these graph reductions

are general enough that this process can be applied to any graph with complex valued weights (or

equivalently matrices with complex valued entries). Hence, the aforementioned eigenvalue estimates

of all matrices in Cn×n can be improved via our process of isospectral graph reduction. Additionally,

this process is sufficiently flexible to improve such eigenvalue estimates towhatever degree is desired.

Aside from this, the associatedmatrix reductions donot seem to requiremuch computational effort.

In fact, it may even be the case that our reductionmethod is sometimes computationallymore feasible

than standard methods of computing spectral properties. With regard to such questions, the compu-

tational complexity of our approach and its potential for computational improvements in calculating

eigenvalues will be addressed in future publications.
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