11,609 research outputs found
A View from Melrose
An essay by President Vivian A. Bull: Another Linfield \u27Defining Moment.\u2
A View from Melrose
An essay by President Vivian A. Bull: Thirteen Years in Review
The role of forensic geoscience in wildlife crime detection
The increase in both automation and precision in the analysis of geological materials has had significant impact upon forensic investigations in the last 10 years. There is however, a fundamental philosophical difference between forensic and geological enquiry. This paper presents the results of forensic geoscientific investigations of three cases of wildlife crime. Two cases involve the analysis of soils recovered after incidents of illegal badger baiting in the United Kingdom. The third case involves the illegal importation of Eleonora's Falcon (Falco eleonorae) into the United Kingdom from the Mediterranean. All three cases utilise the analysis of soils by a variety of physical, chemical and biological techniques. These involve mineral and grain size analyses, cation and anion compositions, pH, organic content and pollen analysis.The independent analysis undertaken by specialists in each of these three main fields conclude firstly, that there is a significant similarity between sediments taken at the crime site at both badger setts and with sediments recovered from various spades, shovels and clothing belonging to suspects and secondly, that the soils analysed associated with the removal of the falcon eggs in the Mediterranean contained characteristics similar in many respects to the soils of the breeding areas of E eleonorae on the cliffs of Mallorca. The use of these independent techniques in wildlife crime detection has great potential given the ubiquitous nature of soils and sediments found in association with wildlife sites. (c) 2006 Elsevier Ireland Ltd. All rights reserved
Particle distributions in approximately 10(14) 10(16) eV air shower cores at sea level
Experimental evidence is reported for fixed distances (0, 1.0, 2.5 and 4.0 m) from the shower centers and for core flattening. The cores become flatter, on average, as the shower size (primary energy) increases. With improved statistics on 4192 cores, the previous results are exactly confirmed
- …