2,467 research outputs found
Synchonisation of Resonances with Thresholds
The mechanism by which a resonance may be attracted to a sharp threshold is
described with several examples. It involves a threshold cusp interfering
constructively with either or both (i) a resonance produced via confinement,
(ii) attractive t- and u-channel exchanges. More generally, it is suggested
that resonances are eigenstates generated by mixing between confined states and
long-range meson and baryon exchanges.Comment: 8 pages, 4 figures. For Meson08 Proceedings. One important typo
correcte
A Study in Depth of f0(1370)
Claims have been made that f0(1370) does not exist. The five primary sets of
data requiring its existence are refitted. Major dispersive effects due to the
opening of the 4pi threshold are included for the first time; the sigma -> 4pi
amplitude plays a strong role. Crystal Barrel data on pbar-p -> 3pizero at rest
require f0(1370) signals of at least 32 and 33 standard deviations in 1S0 and
3P1 annihilation respectively. Furthermore, they agree within 5 MeV for mass
and width. Data on pbar-p -> eta-eta-pizero agree and require at least a 19
standard deviation contribution. This alone is sufficient to demonstrate the
existence of f0(1370). BES II data for J/Psi -> phi-pi-pi contain a visible
f0(1370) signal > 8 standard devations. In all cases, a resonant phase
variation is required. The possibility of a second pole in the sigma amplitude
due to the opening of the 4pi channel is excluded. Cern-Munich data for pi-pi
elastic scattering are fitted well with the inclusion of some mixing between
sigma, f0(1370) and f0(1500). The pi-pi widths for f2(1565), rho3(1690),
rho3(1990) and f4(2040) are determined.Comment: 25 pages, 22 figures. Typos corrected in Eqs 2 and 7. Introduction
rewritten. Conclusions unchange
Space station structures and dynamics test program
The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction
Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity
Although expanded polyglutamine (polyQ) repeats are inherently toxic, causing at least nine neurodegenerative diseases, the protein context determines which neurons are affected. The polyQ expansion that causes Huntington's disease (HD) is in the first exon (HDx-1) of huntingtin (Htt). However, other parts of the protein, including the 17 N-terminal amino acids and two proline (polyP) repeat domains, regulate the toxicity of mutant Htt. The role of the P-rich domain that is flanked by the polyP domains has not been explored. Using highly specific intracellular antibodies (intrabodies), we tested various epitopes for their roles in HDx-1 toxicity, aggregation, localization, and turnover. Three domains in the P-rich region (PRR) of HDx-1 are defined by intrabodies: MW7 binds the two polyP domains, and Happ1 and Happ3, two new intrabodies, bind the unique, P-rich epitope located between the two polyP epitopes. We find that the PRR-binding intrabodies, as well as VL12.3, which binds the N-terminal 17 aa, decrease the toxicity and aggregation of HDx-1, but they do so by different mechanisms. The PRR-binding intrabodies have no effect on Htt localization, but they cause a significant increase in the turnover rate of mutant Htt, which VL12.3 does not change. In contrast, expression of VL12.3 increases nuclear Htt. We propose that the PRR of mutant Htt regulates its stability, and that compromising this pathogenic epitope by intrabody binding represents a novel therapeutic strategy for treating HD. We also note that intrabody binding represents a powerful tool for determining the function of protein epitopes in living cells
The Three-body Force and the Tetraquark Interpretation of Light Scalar Mesons
We study the possible tetraquark interpretation of light scalar meson states
, , , within the framework of the
non-relativistic potential model. The wave functions of tetraquark states are
obtained in a space spanned by multiple Gaussian functions. We find that the
mass spectra of the light scalar mesons can be well accommodated in the
tetraquark picture if we introduce a three-body quark interaction in the quark
model. Using the obtained multiple Gaussian wave functions, the decay constants
of tetraquarks are also calculated within the ``fall apart'' mechanism
Identification of an extracellular bacterial flavoenzyme that can prevent re-polymerisation of lignin fragments
A significant problem in the oxidative breakdown of lignin is the tendency of phenolic radical fragments to re-polymerise to form higher molecular weight species. In this paper we identify an extracellular flavin-dependent dehydrolipoamide dehydrogenase from Thermobifida fusca that prevents oxidative dimerization of a dimeric lignin model compound, which could be used as an accessory enzyme for lignin depolymerisation
Antenatal magnetic resonance imaging versus ultrasound for predicting neonatal macrosomia: a systematic review and meta-analysis
BACKGROUND:
Fetal macrosomia is associated with an increased risk of adverse maternal and neonatal outcomes.
OBJECTIVES:
To compare the accuracy of antenatal two-dimensional (2D) ultrasound, three-dimensional (3D) ultrasound, and magnetic resonance imaging (MRI) in predicting fetal macrosomia at birth.
SEARCH STRATEGY:
Medline (1966-2013), Embase, the Cochrane Library and Web of Knowledge.
SELECTION CRITERIA:
Cohort or diagnostic accuracy studies of women with a singleton pregnancy, who had third-trimester imaging to predict macrosomia (>4000 g, >4500 g or >90th or >95th centile).
DATA COLLECTION AND ANALYSIS:
Two reviewers screened studies, performed data extraction and assessed methodological quality. The bivariate model was used to obtain summary sensitivities, specificities and likelihood ratios.
MAIN RESULTS:
Fifty-eight studies (34 367 pregnant women) were included. Most were poorly reported. Only one study assessed 3D ultrasound volumetry. For predicting birthweight >4000 g or >90th centile, the summary sensitivity for 2D ultrasound (Hadlock) estimated fetal weight (EFW) >90th centile or >4000 g (29 studies) was 0.56 (95% CI 0.49-0.61), 2D ultrasound abdominal circumference (AC) >35 cm (four studies) was 0.80 (95% confidence interval [95% CI] 0.69-0.87) and MRI EFW (three studies) was 0.93 (95% CI 0.76-0.98). The summary specificities were 0.92 (95% CI 0.90-0.94), 0.86 (95% CI 0.74-0.93) and 0.95 (95% CI 0.92-0.97), respectively.
CONCLUSION:
There is insufficient evidence to conclude that MRI EFW is more sensitive than 2D ultrasound AC (which is more sensitive than 2D EFW); although it was more specific. Further primary research is required before recommending MRI EFW for use in clinical practice
Structural Features and Domain Organization of Huntingtin Fibrils
Misfolding and aggregation of huntingtin is one of the hallmarks of Huntington disease, but the overall structure of these aggregates and the mechanisms by which huntingtin misfolds remain poorly understood. Here we used site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study the structural features of huntingtin exon 1 (HDx1) containing 46 glutamine residues in its polyglutamine (polyQ) region. Despite some residual structuring in the N terminus, we find that soluble HDx1 is highly dynamic. Upon aggregation, the polyQ domain becomes strongly immobilized indicating significant tertiary or quaternary packing interactions. Analysis of spin-spin interactions does not show the close contact between same residues that is characteristic of the parallel, in-register structure commonly found in amyloids. Nevertheless, the same residues are still within 20 Ã… of each other, suggesting that polyQ domains from different molecules come into proximity in the fibrils. The N terminus has previously been found to take up a helical structure in fibrils. We find that this domain not only becomes structured, but that it also engages in tertiary or quaternary packing interactions. The existence of spin-spin interactions in this region suggests that such contacts could be made between N-terminal domains from different molecules. In contrast, the C-terminal domain is dynamic, contains polyproline II structure, and lacks pronounced packing interactions. This region must be facing away from the core of the fibrils. Collectively, these data provide new constraints for building structural models of HDx1 fibrils
How Resonances can synchronise with Thresholds
The mechanism by which a threshold may capture a resonance is examined. It
involves a threshold cusp interfering constructively with either or both (i) a
resonance produced via confinement, (ii) attractive t- and u-channel exchanges.
The fo(980), X(3872) and Z(4430) are studied in detail. The fo(980) provides a
valuable model of the locking mechanism. The X(3872) is too narrow to be fitted
by a cusp, and requires either a resonance or virtual state. The Z(4430) can be
fitted as a resonance but also can be fitted successfully by a cusp with no
nearby resonant pole.Comment: 19 pages, 6 figures. Replaces 0709.125
- …