10 research outputs found
Liquid Argon Time Projection Chambers in the studies of rare events (phenomena) in particle physics and astrophysics
W ciagu kilku ostatnich dekad, neutrinowa społecznosc naukowa, wykazała olbrzymie
zainteresowanie wykorzystaniem techniki ciekłoargonowej i ciekłoargonowymi komorami
projekcji czasu (LAr-TPC) do badania rzadkich zdarzen (np. oddziaływanie neutrin czy
WIMPów). Działanie ciekłoargonowych komór projekcji czasu polega na pomiarze sladów
naładowanych czastek oddziałujacych w ciekłym argonie, pomiarze strat energii w
wyniku jonizacji osrodka (dE/dx) oraz identyfikacji oddziałujacych i powstałych czastek.
W pracy tej przedstawiona została technika ciekłoargonowa, zalety i wady róznych koncepcji
detektora ciekłoargonowego, ich konstrukcja i zasada działania, przykłady mozliwych
zastosowan i wyniki jakie mozna osiagnac stosujac ciekłoargonowa komore projekcji
czasu. To ostatnie pokazane jest na przykładzie najwiekszego zbudowanego do tej pory
ciekłoargonowego detektora projekcji czasu: ICARUSa T600 (760 t LAr, 476 t czynnej
masy). Detektor ICARUS T600 z powodzeniem pracował w podziemnym laboratorium
w Gran Sasso we Włoszech (LNGS - Laboratori Nazionali del Gran Sasso [1]) od 2010
do 2013 roku. Podczas jego eksploatacji zebrano dane bedace wynikiem oddziaływania,
w ciekłym argonie, neutrin wyprodukowanych w osrodku CERN i przesłanych do Gran
Sasso (wiazka CNGS [2]). Przeprowadzono takze badania oddziaływan neutrin atmosferycznych.
Doskonała rozdzielczosc kalorymetryczna i rekonstrukcyjna detektora pozwoliła
na szeroki program badawczy, od rozpadu nukleonu do badania oscylacji neutrin
z wiazki CNGS. Wsród badan przeprowadzonych z wykorzystaniem wiazki neutrin mozemy
wyróznic trzy główne: (1) weryfikacja zjawiska nadswietlnosci neutrin sugerowanej
przez eksperyment OPERA [4], (2) dokładne badanie znikania neutrin mionowych oraz
(3) anomalne pojawianie sie neutrin elektronowych. Celem tego ostatniego była eksperymentalna
weryfikacja lub wykluczenie nieprawidłowosci w liczbie obserwowanych neutrin
elektronowych, sugerowany przez eksperyment LSND [3]. W pracy zostały takze opisane
rózne aspekty zwiazane z praca detektora ICARUS T600, poczawszy od zastosowania
ciekłego argonu jako medium w którym oddziałuja czastki, przez osiagniecia z zakresu
fizyki, do przyszłosci detektora w osrodku Fermilab National Accelerator Laboratory
(FNAL [5]) i jego udział w programie badawczym z krótka baza (SBN [6])
The ICARUS T600 experiment at LNGS
Liquid Argon Time Projection Chambers (LAr-TPCs) is an exciting class of detectors designed for registration of very rare events, like neutrino interactions or nucleon decay. They offer good detection efficiency, excellent background rejection, bubble chamber quality images, very good particle identification and calorimetric reconstruction of particle's deposited energy. These capabilities made LAr-TPCs a very promising choice for neutrino physics experiments. In this paper, an overview of LAr-TPC ICARUS T600 detector and its achievements are presented
The past, present and future of LAr-TPC neutrino experiments
Liquid Argon Time Projection Chambers (LAr-TPCs) is an exciting class of detectors designed for registration of very rare events, such as neutrino interactions or nucleon decay. They offer a good detection efficiency,
excellent background rejection, bubble chamber quality images, very good particle identification and calorimetric reconstruction of particle’s deposited energy. These capabilities made LAr-TPCs a very promising choice for neutrino physics experiments. In this paper, an overview of past, present and future neutrino experiments based on LAr-TPC technology is presented
TRD tracking using the cellular automaton algorithm for compressed baryonic matter experiment
The paper describes implementation details of the Cellular Automaton Algorithm (CAA) [I. Abt, D. Emeliyanov, I. Gorbounov, I. Kisel, Nucl. Instrum. Methods Phys. Res. A490, 546 (2002)] for reconstruction of the particles’ tracks in Transition Radiation Detector (TRD), designed for Compressed Baryonic Experiment (CBM) which will operate at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany.
The application and performance of cellular automaton method for standalone track finding and first level event selection are presented
T2K measurements of muon neutrino and antineutrino disappearance using 3.13×1021 protons on target
K. Abe, N. Akhlaq, R. Akutsu, A. Ali, C. Alt, C. Andreopoulos, M. Antonova, S. Aoki, T. Arihara, Y. Asada, Y. Ashida, E. T. Atkin, Y. Awataguchi, G. J. Barker, G. Barr, D. Barrow, M. Batkiewicz-Kwasniak, A. Beloshapkin, F. Bench, V. Berardi, L. Berns, S. Bhadra, A. Blondel, S. Bolognesi, T. Bonus,
B. Bourguille, S. B. Boyd, A. Bravar, D. Bravo Berguño, C. Bronner, S. Bron, M. Buizza Avanzini, S. Cao, S. L. Cartwright, M. G. Catanesi, A. Cervera, D. Cherdack, G. Christodoulou, M. Cicerchia,
J. Coleman, G. Collazuol, L. Cook, D. Coplowe, A. Cudd, G. De Rosa, T. Dealtry, C. C. Delogu, S. R. Dennis, C. Densham, A. Dergacheva, F. Di Lodovico, S. Dolan, T. A. Doyle, J. Dumarchez, P. Dunne , A. Eguchi, L. Eklund, S. Emery-Schrenk, A. Ereditato, A. J. Finch, G. A. Fiorentini, C. Francois, M. Friend, Y. Fujii, R. Fukuda, Y. Fukuda, K. Fusshoeller, C. Giganti, M. Gonin,9 A. Gorin, M. Guigue, D. R. Hadley, P. Hamacher-Baumann, M. Hartz, T. Hasegawa, S. Hassani, N. C. Hastings, Y. Hayato, A. Hiramoto, M. Hogan, N. T. Hong Van, T. Honjo, F. Iacob, A. K. Ichikawa, M. Ikeda, T. Ishida, M. Ishitsuka, K. Iwamoto, A. Izmaylov, N. Izumi, M. Jakkapu, B. Jamieson, S. J. Jenkins, C. Jesús-Valls, P. Jonsson, C. K. Jung, P. B. Jurj, M. Kabirnezhad, H. Kakuno, J. Kameda, S. P. Kasetti, Y. Kataoka, Y. Katayama, T. Katori, E. Kearns, M. Khabibullin, A. Khotjantsev, T. Kikawa, H. Kikutani, S. King, T. Kobata, T. Kobayashi, L. Koch, A. Konaka, L. L. Kormos, Y. Koshio, A. Kostin, K. Kowalik,Y. Kudenko, S. Kuribayashi, R. Kurjata, T. Kutter, M. Kuze, L. Labarga, J. Lagoda, M. Lamoureux, D. Last, M. Laveder, M. Lawe, R. P. Litchfield, S. L. Liu, A. Longhin, L. Ludovici, X. Lu, T. Lux, L. N. Machado, L. Magaletti, K. Mahn, M. Malek, S. Manly, L. Maret, A. D. Marino, L. Marti-Magro, T. Maruyama, T. Matsubara, K. Matsushita, C. Mauger, K. Mavrokoridis, E. Mazzucato, N. McCauley, J. McElwee, K. S. McFarland, C. McGrew, A. Mefodiev, M. Mezzetto, A. Minamino, O. Mineev, S. Mine, M. Miura, L. Molina Bueno, S. Moriyama, Th. A. Mueller, L. Munteanu, Y. Nagai, T. Nakadaira, M. Nakahata, Y. Nakajima, A. Nakamura, K. Nakamura, Y. Nakano, S. Nakayama, T. Nakaya,K. Nakayoshi, C. E. R. Naseby, T. V. Ngoc, V. Q. Nguyen, K. Niewczas, Y. Nishimura, E. Noah,
T. S. Nonnenmacher, F. Nova, J. Nowak, J. C. Nugent, H. M. O’Keeffe, L. O’Sullivan, T. Odagawa,
T. Ogawa, R. Okada, K. Okumura, T. Okusawa, R. A. Owen, Y. Oyama, V. Palladino, V. Paolone, M. Pari, W. C. Parker, S. Parsa, J. Pasternak, M. Pavin, D. Payne, G. C. Penn, L. Pickering, C. Pidcott, G. Pintaudi, C. Pistillo, B. Popov, M. Posiadala-Zezula, A. Pritchard, B. Quilain, T. Radermacher, E. Radicioni, B. Radics, P. N. Ratoff, C. Riccio, E. Rondio, S. Roth, A. Rubbia, A. C. Ruggeri, C. Ruggles, A. Rychter, K. Sakashita, F. Sánchez, G. Santucci, C. M. Schloesser, K. Scholberg, M. Scott, Y. Seiya, T. Sekiguchi, H. Sekiya, D. Sgalaberna, A. Shaikhiev, A. Shaykina, M. Shiozawa, W. Shorrock, A. Shvartsman, K. Skwarczynski, M. Smy, J. T. Sobczyk, H. Sobel, F. J. P. Soler, Y. Sonoda, R. Spina,
S. Suvorov, A. Suzuki, S. Y. Suzuki, Y. Suzuki, A. A. Sztuc, M. Tada, M. Tajima, A. Takeda,
Y. Takeuchi, H. K. Tanaka, Y. Tanihara, M. Tani, N. Teshima, L. F. Thompson, W. Toki, C. Touramanis,
T. Towstego, K. M. Tsui, T. Tsukamoto, M. Tzanov, Y. Uchida, M. Vagins,S. Valder, D. Vargas,
G. Vasseur, C. Vilela, W. G. S. Vinning, T. Vladisavljevic, T. Wachala, J. Walker, J. G. Walsh, Y. Wang,
D. Wark, M. O. Wascko, A. Weber, R. Wendell, M. J. Wilking, C. Wilkinson, J. R. Wilson,
K. Wood, C. Wret, J. Xia, K. Yamamoto, C. Yanagisawa, G. Yang, T. Yano, K. Yasutome, N. Yershov,
M. Yokoyama, T. Yoshida, M. Yu, A. Zalewska, J. Zalipska, K. Zaremba, G. Zarnecki,
M. Ziembicki, M. Zito, S. ZsoldosWe report measurements by the T2K experiment of the parameters θ23 and Δm2
32, which govern the
disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at
T2K’s neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a
mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to
measure these parameters separately for neutrino and antineutrino oscillations. Data taken from 1.49 × 1021
protons on target (POT) in neutrino mode and 1.64 × 1021 POT in antineutrino mode are used. The best-fit
values obtained by T2K were sin2ðθ23
Þ ¼ 0.51
þ0.06
−0.07
ð0.43
þ0.21
−0.05
Þ and Δm2
32
¼ 2.47
þ0.08
−0.09
ð2.50
þ0.18
−0.13
Þ ×
10−3 eV2=c4 for neutrinos (antineutrinos). No significant differences between the values of the parameters
describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an
effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take
nonphysical values larger than 1 is also performed to check the consistency of our data with the three-flavor
model. Our data were found to be consistent with a physical value for the mixing angle
Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K
Authors: K. Abe,56 N. Akhlaq,45 R. Akutsu,57 A. Ali,32 C. Alt,11 C. Andreopoulos,54,34 L. Anthony,21 M. Antonova,19 S. Aoki,31
A. Ariga,2 T. Arihara,59 Y. Asada,69 Y. Ashida,32 E. T. Atkin,21 Y. Awataguchi,59 S. Ban,32 M. Barbi,46 G. J. Barker,66
G. Barr,42 D. Barrow,42 M. Batkiewicz-Kwasniak,15 A. Beloshapkin,26 F. Bench,34 V. Berardi,22 L. Berns,58 S. Bhadra,70
S. Bienstock,53 S. Bolognesi,6 T. Bonus,68 B. Bourguille,18 S. B. Boyd,66 A. Bravar,13 D. Bravo Berguño,1 C. Bronner,56
S. Bron,13 A. Bubak,51 M. Buizza Avanzini ,10 T. Campbell,7 S. Cao,16 S. L. Cartwright,50 M. G. Catanesi,22 A. Cervera,19
D. Cherdack,17 N. Chikuma,55 G. Christodoulou,12 M. Cicerchia,24,† J. Coleman,34 G. Collazuol,24 L. Cook,42,28
D. Coplowe,42 A. Cudd,7 A. Dabrowska,15 G. De Rosa,23 T. Dealtry,33 S. R. Dennis,34 C. Densham,54 F. Di Lodovico,30
N. Dokania,39 S. Dolan,12 T. A. Doyle,33 O. Drapier,10 J. Dumarchez,53 P. Dunne,21 A. Eguchi,55 L. Eklund,14
S. Emery-Schrenk,6 A. Ereditato,2 A. J. Finch,33 G. Fiorillo,23 C. Francois,2 M. Friend,16,‡ Y. Fujii,16,‡ R. Fujita,55
D. Fukuda,40 R. Fukuda,60 Y. Fukuda,37 K. Fusshoeller,11 C. Giganti,53 M. Gonin,10 A. Gorin,26 M. Guigue,53
D. R. Hadley,66 J. T. Haigh,66 P. Hamacher-Baumann,49 M. Hartz,62,28 T. Hasegawa,16,‡ S. Hassani,6 N. C. Hastings,16
Y. Hayato,56,28 A. Hiramoto,32 M. Hogan,8 J. Holeczek,51 N. T. Hong Van,20,27 T. Honjo,41 F. Iacob,24 A. K. Ichikawa,32
M. Ikeda,56 T. Ishida,16,‡ M. Ishitsuka,60 K. Iwamoto,55 A. Izmaylov,26 N. Izumi,60 M. Jakkapu,16 B. Jamieson,67
S. J. Jenkins,50 C. Jesús-Valls,18 M. Jiang,32 P. Jonsson,21 C. K. Jung,39,§ X. Junjie,57 P. B. Jurj,21 M. Kabirnezhad,42
A. C. Kaboth,48,54 T. Kajita,57,§ H. Kakuno,59 J. Kameda,56 D. Karlen,63,62 S. P. Kasetti,35 Y. Kataoka,56 Y. Katayama,69
T. Katori,30 Y. Kato,56 E. Kearns,3,28,§ M. Khabibullin,26 A. Khotjantsev,26 T. Kikawa,32 H. Kikutani,55 H. Kim,41 S. King,30
J. Kisiel,51 A. Knight,66 T. Kobata,41 T. Kobayashi,16,‡ L. Koch,42 T. Koga,55 A. Konaka,62 L. L. Kormos,33 Y. Koshio,40,§
A. Kostin,26 K. Kowalik,38 H. Kubo,32 Y. Kudenko,26,∥ N. Kukita,41 S. Kuribayashi,32 R. Kurjata,65 T. Kutter,35 M. Kuze,58
L. Labarga,1 J. Lagoda,38 M. Lamoureux,24 D. Last,43 M. Lawe,33 M. Licciardi,10 R. P. Litchfield,14 S. L. Liu,39 X. Li,39
A. Longhin,24 L. Ludovici,25 X. Lu,42 T. Lux,18 L. N. Machado,23 L. Magaletti,22 K. Mahn,36 M. Malek,50 S. Manly,47
L. Maret,13 A. D. Marino,7 L. Marti-Magro,56,28 T. Maruyama,16,‡ T. Matsubara,16 K. Matsushita,55 V. Matveev,26
C. Mauger,43 K. Mavrokoridis,34 E. Mazzucato,6 N. McCauley,34 J. McElwee,50 K. S. McFarland,47 C. McGrew,39
A. Mefodiev,26 C. Metelko,34 M. Mezzetto,24 A. Minamino,69 O. Mineev,26 S. Mine,5 M. Miura,56,§ L. Molina Bueno,11
S. Moriyama,56,§ Th. A. Mueller,10 L. Munteanu,6 S. Murphy,11 Y. Nagai,7 T. Nakadaira,16,‡ M. Nakahata,56,28
Y. Nakajima,56 A. Nakamura,40 K. Nakamura,28,16,‡ S. Nakayama,56,28 T. Nakaya,32,28 K. Nakayoshi,16,‡ C. E. R. Naseby,21
T. V. Ngoc,20,¶ K. Niewczas,68 K. Nishikawa,16,* Y. Nishimura,29 E. Noah,13 T. S. Nonnenmacher,21 F. Nova,54 P. Novella,19
J. Nowak,33 J. C. Nugent,14 H. M. O’Keeffe,33 L. O’Sullivan,50 T. Odagawa,32 T. Ogawa,16 R. Okada,40 K. Okumura,57,28
T. Okusawa,41 S. M. Oser,4,62 R. A. Owen,45 Y. Oyama,16,‡ V. Palladino,23 V. Paolone,44 M. Pari,24 W. C. Parker,48
S. Parsa,13 J. Pasternak,21 M. Pavin,62 D. Payne,34 G. C. Penn,34 L. Pickering,36 C. Pidcott,50 G. Pintaudi,69 C. Pistillo,2
B. Popov,53,** K. Porwit,51 M. Posiadala-Zezula,64 A. Pritchard,34 B. Quilain,10 T. Radermacher,49 E. Radicioni,22
B. Radics,11 P. N. Ratoff,33 C. Riccio,39 E. Rondio,38 S. Roth,49 A. Rubbia,11 A. C. Ruggeri,23 C. Ruggles,14 A. Rychter,65
K. Sakashita,16,‡ F. Sánchez,13 G. Santucci,70 C. M. Schloesser,11 K. Scholberg,9,§ M. Scott,21 Y. Seiya,41,†† T. Sekiguchi,16,‡
H. Sekiya,56,28,§ D. Sgalaberna,11 A. Shaikhiev,26 A. Shaykina,26 M. Shiozawa,56,28 W. Shorrock,21 A. Shvartsman,26
M. Smy,5 J. T. Sobczyk,68 H. Sobel,5,28 F. J. P. Soler,14 Y. Sonoda,56 S. Suvorov,26,6 A. Suzuki,31 S. Y. Suzuki,16,‡
Y. Suzuki,28 A. A. Sztuc,21 M. Tada,16,‡ M. Tajima,32 A. Takeda,56 Y. Takeuchi,31,28 H. K. Tanaka,56,§ H. A. Tanaka,52,61
S. Tanaka,41 Y. Tanihara,69 N. Teshima,41 L. F. Thompson,50 W. Toki,8 C. Touramanis,34 T. Towstego,61 K. M. Tsui,34
T. Tsukamoto,16,‡ M. Tzanov,35 Y. Uchida,21 M. Vagins,28,5 S. Valder,66 Z. Vallari,39 D. Vargas,18 G. Vasseur,6
W. G. S. Vinning,66 T. Vladisavljevic,54 V. V. Volkov,26 T. Wachala,15 J. Walker,67 J. G. Walsh,33 Y. Wang,39 D. Wark,54,42
M. O. Wascko,21 A. Weber,54,42 R. Wendell,32,§ M. J. Wilking,39 C. Wilkinson,2 J. R. Wilson,30 K. Wood,39
C. Wret,47 K. Yamamoto,41,†† C. Yanagisawa,39,‡‡ G. Yang,39 T. Yano,56 K. Yasutome,32 N. Yershov,26 M. Yokoyama,55,§
T. Yoshida,58 M. Yu,70 A. Zalewska,15 J. Zalipska,38 K. Zaremba,65 G. Zarnecki,38 M. Ziembicki,65
E. D. Zimmerman,7 M. Zito,53 S. Zsoldos,30 and A. Zykova26
(T2K Collaboration)This paper reports the first simultaneous measurement of the double differential muon neutrino chargedcurrent
cross section on oxygen and carbon without pions in the final state as a function of the outgoing
muon kinematics, made at the ND280 off-axis near detector of the T2K experiment. The ratio of the oxygen
and carbon cross sections is also provided to help validate various models’ ability to extrapolate between
carbon and oxygen nuclear targets, as is required in T2K oscillation analyses. The data are taken using a
neutrino beam with an energy spectrum peaked at 0.6 GeV. The extracted measurement is compared with
the prediction from different Monte Carlo neutrino-nucleus interaction event generators, showing particular
model separation for very forward-going muons. Overall, of the models tested, the result is best described
using local Fermi gas descriptions of the nuclear ground state with RPA suppression
Global characteristics of (197)Au+ (197)Au collisions at 23 AMeV
We present the current status of nuclear dynamics studies performed by the BREAKUP group with the 4 pi CHIMERA array, for the system Au-197 + Au-197 at 23 AMeV
Light fragments production and isospin dependences in Sn+Ni and Sn+Al central collisions at 25MeV/A and 35MeV/A from reverse/isospin experiments
This paper presents the physical analysis results for the following reactions: 124Sn+64Ni, 124Sn+27Al, 124Sn+58Ni at 35MeV/A and 25MeV/A. The main goal of this studies was to find observables sensitive to isospin effects and to present the similarities/differences between the systems characterised
by various charge asymmetry factor, defined as I = (NZ)=A. Theoretical simulations based on the Quantum Molecular Dynamics (QMD) model have been performed in order to compare them with the results
of the analysis of experimental data. The first phase of the reaction was carried out with the code CHIMERA [1]. The sequential decay of hot fragments was simulated by the code COOLER [2]. The conclusions are as
follows: there are observables sensitive to the isospin of the system, such as the Light Charged Particles (LCP) emission and their sensitivity is demonstrated more prominently in the analysis of central collisions at 35MeV/A.
The theoretical calculations do not reproduce these relations well
Emission of intermediate mass fragments in the p(1.9GeV)+natNi reaction
The emission of the intermediate mass fragments (IMFs; 2 Z 14) produced in the interaction of 1 .9 GeV protons with nickel (Ni) has been a subject of interest of the present study. Energy spectra of isotopically and elementally identified ejectiles have been measured at angles 15° and 120° with the respect to the beam direction. The identification of the emitted IMFs has been performed by means of the Bragg curve spectroscopy and the time-of-flight technique (TOF). The Bragg curve detectors (BCDs) were employed for the charge identification, whereas the TOF method combined with the BCD, for the mass identification. The main task of the present PhD thesis was to built appropriate data acquisition system, to perform the experiment on the internal beam of the COSY accelerator, to propose the methodology of the off-line analysis of the data, to apply it to the event-by-event stored data, and to perform the phenomenological analysis of the obtained data. The results, experimental procedures, and different techniques of the element and isotope identification by means of the BCD + TOF are presented. The determination of the power law parameter characterizing the mass and charge distributions of the reaction products is discussed. Various methods of the nuclear matter temperature determination, the comparison between nuclear matter thermometers, and the discussion of the obtained results, shown in the energy-temperature diagram (the so called caloric curve), are presented as well. The results suggest two different mechanisms of the IMFs production : from the equilibrated (IMFs measured at 120°), and non-equilibrated (IMFs measured at 15°) state of the nucleus