108 research outputs found

    Fractal descriptors based on the probability dimension: a texture analysis and classification approach

    Get PDF
    In this work, we propose a novel technique for obtaining descriptors of gray-level texture images. The descriptors are provided by applying a multiscale transform to the fractal dimension of the image estimated through the probability (Voss) method. The effectiveness of the descriptors is verified in a classification task using benchmark over texture datasets. The results obtained demonstrate the efficiency of the proposed method as a tool for the description and discrimination of texture images.Comment: 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1205.282

    Satellite image classification and segmentation using non-additive entropy

    Get PDF
    Here we compare the Boltzmann-Gibbs-Shannon (standard) with the Tsallis entropy on the pattern recognition and segmentation of coloured images obtained by satellites, via "Google Earth". By segmentation we mean split an image to locate regions of interest. Here, we discriminate and define an image partition classes according to a training basis. This training basis consists of three pattern classes: aquatic, urban and vegetation regions. Our numerical experiments demonstrate that the Tsallis entropy, used as a feature vector composed of distinct entropic indexes qq outperforms the standard entropy. There are several applications of our proposed methodology, once satellite images can be used to monitor migration form rural to urban regions, agricultural activities, oil spreading on the ocean etc.Comment: 4 pages, 5 figures, ICMSquare 201

    Complex network classification using partially self-avoiding deterministic walks

    Full text link
    Complex networks have attracted increasing interest from various fields of science. It has been demonstrated that each complex network model presents specific topological structures which characterize its connectivity and dynamics. Complex network classification rely on the use of representative measurements that model topological structures. Although there are a large number of measurements, most of them are correlated. To overcome this limitation, this paper presents a new measurement for complex network classification based on partially self-avoiding walks. We validate the measurement on a data set composed by 40.000 complex networks of four well-known models. Our results indicate that the proposed measurement improves correct classification of networks compared to the traditional ones

    Fast, parallel and secure cryptography algorithm using Lorenz's attractor

    Full text link
    A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher in

    Texture descriptor combining fractal dimension and artificial crawlers

    Get PDF
    Texture is an important visual attribute used to describe images. There are many methods available for texture analysis. However, they do not capture the details richness of the image surface. In this paper, we propose a new method to describe textures using the artificial crawler model. This model assumes that each agent can interact with the environment and each other. Since this swarm system alone does not achieve a good discrimination, we developed a new method to increase the discriminatory power of artificial crawlers, together with the fractal dimension theory. Here, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. We validate our method on two texture datasets and the experimental results reveal that our method leads to highly discriminative textural features. The results indicate that our method can be used in different texture applications.Comment: 12 pages 9 figures. Paper in press: Physica A: Statistical Mechanics and its Application
    • …
    corecore