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Abstract. Here we compare the Boltzmann-Gibbs-Shannon (standard) with the Tsallis
entropy on the pattern recognition and segmentation of colored images obtained by satellites, via
“Google Earth”. By segmentation we mean particionate an image to locate regions of interest.
Here, we discriminate and define an image partition classes according to a training basis. This
training basis consists of three pattern classes: aquatic, urban and vegetation regions. Our
numerical experiments demonstrate that the Tsallis entropy, used as a feature vector composed
of distinct entropic indexes q outperforms the standard entropy. There are several applications
of our proposed methodology, once satellite images can be used to monitor migration form rural
to urban regions, agricultural activities, oil spreading on the ocean etc.

1. Introduction

Image pattern recognition is a common issue in medicine, biology, geography etc, in short, in
domains that produce huge data in images format. Entropy, in its origins is interpreted as a
disorder measure. Nevertheless, nowadays it is interpreted as the lack of information. Thus, it
has been used as a methodology to measure the information content of a signal or an image.
In image analysis, the greater the entropy is, the more irregular and patternless a given image
is. The additive property of the standard entropy allows its use in several situations just by
summing up image characteristics. Among the non-additive entropies, we study the Tsallis
entropy, which has been proposed to extent the scope of application of classical statistical
physics. Here, we compare the additive Boltzmann-Gibbs-Shannon (standard) [1] and non-
additive Tsallis entropy [2] when dealing with colored satellite images.

We start defining the standard entropy for black and white images and we simply extend its
use to colored images, justified by its additive property. Next, we consider the Tsallis entropy
for black and white images and extend it to colored images. Due to non-additiveness, we call
attention to some characteristics that help to qualify these images more efficiently that the
standard entropy.
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2. Non-additive entropy

Firstly, consider an black and white image with Lx × Ly pixels. The integers i ∈ [1, Lx] and
j ∈ [1, Ly ] run along the x̂ and ŷ directions, respectively. Let the integer p̃i,j ∈ [0, 255] represent
the image gray levels intensity of pixel (i, j). The histograms p̃(x) of a gray levels image are
obtained by counting the number of pixels with a given intensity p̃i,j. To properly use the
entropic indexes, one must consider normalized quantities: p(x) = p̃(x)/(Lx × Ly), so that
normalization condition

∑255
x=0 p(x) = 1 is satisfied. The standard entropy of this image is:

H = −
∑255

x=0 p(x) ln p(x) =
∑255

x=0 p(x) ln(1/p(x)).
For colored images, a given pixel has three components: red (k = 1), green (k = 2) and

blue (k = 3), and the integer intensity concerning each one of these colors are written as
p̃i,j,k ∈ [0, 255], so that k = 1, 2, 3. This leads to different histograms for each color: pk(x), and
hence different entropies for each color: Hk, with k = 1, 2, 3.

For two images A and B, for a given color, the entropy of the composed image, is the entropy
of one image plus the other Hk(A + B) = Hk(A) +Hk(B). This is the additivity property of
the standard entropy, which leads to:

H1 =
255
∑

x=0

p1(x) ln

(

1

p1(x)

)

;H2 =
255
∑

x=0

p2(x) ln

(

1

p2(x)

)

;H3 =
255
∑

x=0

p3(x) ln

(

1

p3(x)

)

. (1)

Secondly, consider an black and white image mentioned before. The Tsallis entropy is
for it generalizes the standart entropy[3]: Sq =

∑255
x=0 p(x) lnq(1/p(x)), where the generalized

logarithmic function is lnq(x) = (xq−1− 1)/(q− 1), so that, as q → 1, one retrieves the standard
logarithm, consequently the standard entropy.

To build a feature vector, one simply uses n different entropic values: ~Sbw = (Sbw,q1, Sbw,q2 , . . . , Sbw,qn) ,
so that n = 1 and q = 1, one retrieves the standard entropy image qualifier. Notice the richness
introduced by this qualifier. If n = 1, we have already an infinity range of entropy indexes
to address. This richness is amplified for n > 1, considering instances of : q < 1, q = 1 and
q > 1 [4].

Since lnq(x1x2) = lnq(x1)+ lnq(x2)+ (1− q) lnq(x1) lnq(x2), see Ref. [5], Sbw,q is non-additive
leading to interesting results when composing two images A and B. The entropy of the composed
image is Sbw,q(A + B) = Sbw,q(A) + Sbw,q(B) + (1 − q)Sbw,q(A)Sbw,q(B), which, for q 6= 1 is
not simply summation of two entropic values. This property leads to different entropic values
depending on how one partitions a given image. The final image entropy is not simply to
summation of the entropy of all its partitions, but it depends on the sizes of these partitions.

For colored images, we proceed as before, we calculate the entropy of each color component,
in principle with different entropy indices values: q(r), q(g) and q(b). For sake of simplicity, we
consider the same entropic index for all the color components. For color k the entropy is:

Sq(k) =
255
∑

x=0

pk(x) lnq

(

1

pk(x)

)

, (2)

so that so that k = 1, 2, 3 retrieves Eq. (1), for q = 1.

3. Metodology

Considering pattern recognition in images, the main objective is to classify a given sample
according to a set of classes from a database. In supervised learning, the classes are
predetermined. These classes can be conceived of as a finite set, previously arrived by a human.
In practice, a certain segment of data is labelled with these classifications. The classifier task is
search for patterns and classify a sample as one of the database classes.
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To perform this classification, classifiers usually uses a feature vector that comes from a
method of data extraction. Here, we use the multi-q analyses method [6] [7] that composes a fea-

ture vector using certain q-entropy values: ~Sq = (Sq1(1);Sq1(2);Sq1(3); . . . ;Sqn(1);Sqn(2);Sqn(3)).
The reason to use the multi-q analysis is that a feature vector gives us more and richer

information than a single value of entropy. The correct choice of q indexes emphasize
characteristics and provide better classifications.

The following steps describe image treatment, training and validation:

• Using Google Earth software, capture images from several locations;

• each image must be segmented in 16× 16 pixels partitions;

• for each partition the colors Red, Green and Blue are written in a tridimensional array;

• for each array and for each color, histograms are built and the Tsallis entropies (Eq. 2) are
calculated, for q ∈ [0, 2] in steps of 1/10;

• the feature vector is created and the classifiers k-nearest neighbors (KNN), Support Vector
Machine (SVM) and Best-First Decision Tree (BFTree) are applied;

• an output image are delivered with the segmented partitions highlighted (aquatic region =
yellow, urban region = cyan, vegetation regions = magenta) according with the classification
of KNN classifier.

(a)

(b)

(c)

Figure 1. Images obtained from Google Earth, from different regions. (a) Urban, (b) Aquatic,
(c) Vegetation

Table 1 presents the hit rate percentage of each classifier evaluated for the 3 methods: multi-q
analysis, multi-q analysis with attribute selection and standard entropy analysis. Since the use
of a feature vector gives us more information than a single entropy value it also gives some
redundant information. In this context, the feature selection is important to eliminates those
redundancies.
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Table 1. Several classifiers are used (SVM, KNN and BFTree) to compare the performance of
the generalized entropy with respect to the standard one in pattern recognition.
*attribute selection

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Classifier

Method (# of features)
Multi-q (60) Multi-q * (8) BGS (3)

SVM 69.60 % 68.96 % 65.60 %
KNN (1 neighbour) 70.80 % 69.76 % 63.04 %
KNN (3 neighbours) 72.32 % 72.96 % 64.00 %
KNN (5 neighbours) 72.80 % 73.28 % 64.16 %
KNN (7 neighbours) 74.88 % 72.96 % 68.48 %
BFTree 72.16 % 72.80 % 67.36 %

Figure 2 depicts image highlights produced by KNN method, evaluated in a region that
contains the three types of pattern classes: aquatic, urban and vegetation regions.

(a) Original Image (b) KNN with 1 neigbour classi-
fier

(c) KNN with 3 neigbour classifier

Figure 2. Segmentation obtained by Multi-q method and highlights provided by KNN classifier.
The yellow color indicates an aquatic region, the cyan color indicates an urban region and the
magenta color indicates a vegetation region.

4. Conclusion

Our study indicates that the Tsallis non-additive entropy can be successfully used in the
construction of a feature vector, concerning colored satellite images. This entropy generalizes
the Boltzmann-Gibbs one, which can be retrieved with q = 1. For q 6= 1, the image retrieval
success is better that the standard case (q = 1), once the entropic parameter q allows thorougher
image exploration.
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