1,025 research outputs found
Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180 nm
High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) based on the 180 nm
HV-CMOS process have been proposed to realize thin, fast and highly integrated
pixel sensors. The MuPix7 prototype, fabricated in the commercial AMS H18
process, features a fully integrated on-chip readout, i.e. hit-digitization,
zero suppression and data serialization. It is the first fully monolithic
HV-CMOS pixel sensor that has been tested for the use in high irradiation
environments like HL-LHC. We present results from laboratory and test beam
measurements of MuPix7 prototypes irradiated with neutrons (up to
) and protons (up to ) and compare the performance with non-irradiated
sensors. Efficiencies well above 90 % at noise rates below 200 Hz per pixel are
measured. A time resolution better than 22 ns is measured for all tested
settings and sensors, even at the highest irradiation fluences. The data
transmission at 1.25 Gbit/s and the on-chip PLL remain fully functional
The MuPix Telescope: A Thin, high Rate Tracking Telescope
The MuPix Telescope is a particle tracking telescope, optimized for tracking
low momentum particles and high rates. It is based on the novel High-Voltage
Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking
detector. The telescope represents a first application of the HV-MAPS
technology and also serves as test bed of the Mu3e readout chain. The telescope
consists of up to eight layers of the newest prototypes, the MuPix7 sensors,
which send data self-triggered via fast serial links to FPGAs, where the data
is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer
could be processed. Online tracking is performed with a subset of the incoming
data. The general concept of the telescope, chip architecture, readout concept
and online reconstruction are described. The performance of the sensor and of
the telescope during test beam measurements are presented.Comment: Proceedings TWEPP 2016, 8 pages, 7 figure
MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m.
It provides continuous self-triggered, non-shuttered readout at rates up to 30
Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit
efficiency depends on the chosen working point. Settings with a power
consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution
of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam
campaigns are shown.Comment: Proceedingsfor the PIXEL2016 conference, submitted to JINST A
dangling reference has been removed from this version, no other change
Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of <0.1%.
Precise measurement of Rπ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented
Status of the TRIUMF PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio
with precision % to provide a sensitive test of electron-muon
universality in weak interactions. The current status of the PIENU experiment
is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure
Improved Search for Heavy Neutrinos in the Decay
A search for massive neutrinos has been made in the decay . No evidence was found for extra peaks in the positron energy spectrum
indicative of pion decays involving massive neutrinos (). Upper limits (90 \% C.L.) on the neutrino mixing matrix element
in the neutrino mass region 60--135 MeV/ were set, which are
%representing an order of magnitude improvement over previous results
Search for heavy neutrinos in pi > mu nu decay
In the present work of the PIENU experiment, heavy neutrinos were sought in pion decays pi(+) -> mu(+)nu at rest by examining the observed muon energy spectrum for extra peaks in addition to the expected peak for a light neutrino. No evidence for heavy neutrinos was observed. Upper limits were set on the neutrino mixing matrix vertical bar U-mu i vertical bar(2) in the neutrino mass region of 15.7-33.8 MeV/c(2), improving on previous results by an order of magnitude. (C) 2019 The Authors. Published by Elsevier B.V
The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment
Mu3e is a novel experiment searching for charged lepton flavor violation in the rare decay . In order to reduce background by up to 16 orders of magnitude, decay vertex position, decay time and particle momenta have to be measured precisely. A pixel tracker based on 50mm thin high voltage monolithic active pixel sensors (HV-MAPS) in a magnetic field will deliver precise vertex and momentum information. Test beam results like an excellent efficiency of > 99:5% and a time resolution of better than 16.6 ns obtained with the MuPix HV-MAPS chip developed for the Mu3e pixel tracker are presented
- …