2,702 research outputs found

    Xe films on a decagonal Al-Ni-Co quasicrystal surface

    Full text link
    The grand canonical Monte Carlo method is employed to study the adsorption of Xe on a quasicrystalline Al-Ni-Co surface. The calculation uses a semiempirical gas-surface interaction, based on conventional combining rules and the usual Lennard-Jones Xe-Xe interaction. The resulting adsorption isotherms and calculated structures are consistent with the results of LEED experimental data. In this paper we focus on five features not discussed earlier (Phys. Rev. Lett. 95, 136104 (2005)): the range of the average density of the adsorbate, the order of the transition, the orientational degeneracy of the ground state, the isosteric heat of adsorption of the system, and the effect of the vertical cell dimension.Comment: 6 pages, 5 pic

    Noble gas films on a decagonal AlNiCo quasicrystal

    Full text link
    Thermodynamic properties of Ne, Ar, Kr, and Xe adsorbed on an Al-Ni-Co quasicrystalline surface (QC) are studied with Grand Canonical Monte Carlo by employing Lennard-Jones interactions with parameter values derived from experiments and traditional combining rules. In all the gas/QC systems, a layer-by-layer film growth is observed at low temperature. The monolayers have regular epitaxial fivefold arrangements which evolve toward sixfold close-packed structures as the pressure is increased. The final states can contain either considerable or negligible amounts of defects. In the latter case, there occurs a structural transition from five to sixfold symmetry which can be described by introducing an order parameter, whose evolution characterizes the transition to be continuous or discontinuous as in the case of Xe/QC (first-order transition with associated latent heat). By simulating fictitious noble gases, we find that the existence of the transition is correlated with the size mismatch between adsorbate and substrate's characteristic lengths. A simple rule is proposed to predict the phenomenon.Comment: 19 pages. 8 figures. (color figures can be seen at http://alpha.mems.duke.edu/wahyu/ or http://www.iop.org/EJ/abstract/0953-8984/19/1/016007/

    PB1803 A General Guide to Pricing for Direct Farm Marketers and Value-Added Agricultural Entrepreneurs

    Get PDF
    Version 3.

    PB1802 A Farmer\u27s Guide to a Pick-Your-Own Operation

    Get PDF

    Brightest Cluster Galaxies and Core Gas Density in REXCESS Clusters

    Full text link
    We investigate the relationship between brightest cluster galaxies (BCGs) and their host clusters using a sample of nearby galaxy clusters from the Representative XMM Cluster Structure Survey (REXCESS). The sample was imaged with the Southern Observatory for Astrophysical Research (SOAR) in R band to investigate the mass of the old stellar population. Using a metric radius of 12h^-1 kpc, we found that the BCG luminosity depends weakly on overall cluster mass as L_BCG \propto M_cl^0.18+-0.07, consistent with previous work. We found that 90% of the BCGs are located within 0.035 r_500 of the peak of the X-ray emission, including all of the cool core (CC) clusters. We also found an unexpected correlation between the BCG metric luminosity and the core gas density for non-cool core (non-CC) clusters, following a power law of n_e \propto L_BCG^2.7+-0.4 (where n_e is measured at 0.008 r_500). The correlation is not easily explained by star formation (which is weak in non-CC clusters) or overall cluster mass (which is not correlated with core gas density). The trend persists even when the BCG is not located near the peak of the X-ray emission, so proximity is not necessary. We suggest that, for non-CC clusters, this correlation implies that the same process that sets the central entropy of the cluster gas also determines the central stellar density of the BCG, and that this underlying physical process is likely to be mergers.Comment: 16 pages, 8 figures, accepted Astrophysical Journa

    Reconstructing palaeotemperatures using leaf floras – case studies for a comparison of leaf margin analysis and the coexistence approach

    Get PDF
    AbstractIn the past the problems and advantages of the nearest-living-relative (NLR) and leaf physiognomy approaches have been repeatedly discussed and it has been demonstrated that both approaches frequently show broad agreement with each other. However, detailed comparisons of the various methods for accuracy in estimation of palaeoclimate at individual localities are still lacking. Such studies are needed before data obtained from different approaches can be integrated in palaeoclimate maps and models. Moreover, there are some indications that leaf physiognomy and NLR approaches may lead to different results. In this study we applied a physiognomic method based on leaf margin analysis and the coexistence approach, a recent variation of the NLR approach, to two Tertiary palaeofloras (Schrotzburg, Middle Miocene, south Germany; Kleinsaubernitz, Upper Oligocene, east Germany). We demonstrated that both approaches can produce reasonable and consistent results if the standard error of the leaf physiognomy palaeoclimate data is taken into account. However, our results and interpretations indicate that reconstructions based on leaf physiognomy are influenced by factors not related to climate, such as sample size and differential preservation or transport. In contrast, reconstructions for the same fossil assemblages based on the coexistence approach seem to be less affected by taphonomic variables, but may be less sensitive to minor climate changes

    Background Measurements in the Gran Sasso Underground Laboratory

    Full text link
    The gamma background flux below 3000 keV in the Laboratori Nazionali del Gran Sasso (LNGS), Italy, has been measured using a 3" diameter NaI(Tl) detector at different underground positions: In hall A, hall B, the interferometer tunnel, and inside the Large Volume Detector (LVD). The integrated flux is 0.3--0.4 s−1^{-1}cm−2^{-2} at the first three locations, and is lower by two orders of magnitude inside LVD. With the help of Monte Carlo simulations for every location, the contribution of the individual primordial isotopes to the background has been determined. Using an 11" diameter NaI(Tl) detector, the background neutron flux in the LNGS interferometer tunnel has been estimated. Within the uncertainties, the result agrees with those from other neutron measurements in the main halls.Comment: 6 pages, 6 figures, accepted versio
    • …
    corecore