2,853 research outputs found
Arabidopsis Tetraspanins Are Confined to Discrete Expression Domains and Cell Types in Reproductive Tissues and Form Homo- and Heterodimers When Expressed in Yeast
Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The genome of Arabidopsis (Arabidopsis thaliana) encodes 17 members of the tetraspanin family; however, little is known about their functions in plant development. Here, we analyzed their phylogeny, protein topology, and domain structure and surveyed their expression and localization patterns in reproductive tissues. We show that, despite their low sequence identity with metazoan tetraspanins, plant tetraspanins display the typical structural topology and most signature features of tetraspanins in other multicellular organisms. Arabidopsis tetraspanins are expressed in diverse tissue domains or cell types in reproductive tissues, and some accumulate at the highest levels in response to pollination in the transmitting tract and stigma, male and female gametophytes and gametes. Arabidopsis tetraspanins are preferentially targeted to the plasma membrane, and they variously associate with specialized membrane domains, in a polarized fashion, to intercellular contacts or plasmodesmata. A membrane-based yeast (Saccharomyces cerevisiae) two-hybrid system established that tetraspanins can physically interact, forming homo- and heterodimer complexes. These results, together with a likely genetic redundancy, suggest that, similar to their metazoan counterparts, plant tetraspanins might be involved in facilitating intercellular communication, whose functions might be determined by the composition of tetraspanin complexes and their binding partners at the cell surface of specific cell types.Marie Curie International Reintegration grant: (no. IRGâ256602), U.S. Department of Agriculture-Agricultural Research Service Current Research Information System grant: (5335â21000â030â00D), Fundação
CiĂȘncia e Tecnologia Postdoctoral Fellowship: (SFRH/BPD/43584/2008), China Scholarship Council fellowship, UC-Berkeley College of Natural Resources SPUR
Credibility and adjustment: gold standards versus currency boards
It is often maintained that currency boards (CBs) and gold standards (GSs) are alike in that they are stringent monetary rules, the two basic features of which are high credibility of monetary authorities and the existence of automatic adjustment (non discretionary) mechanism. This article includes a comparative analysis of these two types of regimes both from the perspective of the sources and mechanisms of generating confidence and credibility, and the elements of operation of the automatic adjustment mechanism. Confidence under the GS is endogenously driven, whereas it is exogenously determined under the CB. CB is a much more asymmetric regime than GS (the adjustment is much to the detriment of peripheral countries) although asymmetry is a typical feature of any monetary regime. The lack of credibility is typical for peripheral countries and cannot be overcome completely even by âhardâ monetary regimes.http://deepblue.lib.umich.edu/bitstream/2027.42/40078/3/wp692.pd
Statistical Mechanics of Nonuniform Magnetization Reversal
The magnetization reversal rate via thermal creation of soliton pairs in
quasi-1D ferromagnetic systems is calculated. Such a model describes e.g. the
time dependent coercivity of elongated particles as used in magnetic recording
media. The energy barrier that has to be overcome by thermal fluctuations
corresponds to a soliton-antisoliton pair whose size depends on the external
field. In contrast to other models of first order phase transitions such as the
phi^4 model, an analytical expression for this energy barrier is found for all
values of the external field. The magnetization reversal rate is calculated
using a functional Fokker-Planck description of the stochastic magnetization
dynamics. Analytical results are obtained in the limits of small fields and
fields close to the anisotropy field. In the former case the hard-axis
anisotropy becomes effectively strong and the magnetization reversal rate is
shown to reduce to the nucleation rate of soliton-antisoliton pairs in the
overdamped double sine-Gordon model. The present theory therefore includes the
nucleation rate of soliton-antisoliton pairs in the double sine-Gordon chain as
a special case. These results demonstrate that for elongated particles, the
experimentally observed coercivity is significantly lower than the value
predicted by the standard theories of N\'eel and Brown.Comment: 21 pages RevTex 3.0 (twocolumn), 6 figures available on request, to
appear in Phys Rev B, Dec (1994
Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field
Soliton excitations and their stability in anisotropic quasi-1D ferromagnets
are analyzed analytically. In the presence of an external magnetic field, the
lowest lying topological excitations are shown to be either soliton-soliton or
soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic
size, these configurations correspond to twisted or untwisted pairs of Bloch
walls. It is shown that the fluctuations around these configurations are
governed by the same set of operators. The soliton-antisoliton pair has exactly
one unstable mode and thus represents a critical nucleus for thermally
activated magnetization reversal in effectively one-dimensional systems. The
soliton-soliton pair is stable for small external fields but becomes unstable
for large magnetic fields. From the detailed expression of this instability
threshold and an analysis of nonlocal demagnetizing effects it is shown that
the relative chirality of domain walls can be detected experimentally in thin
ferromagnetic films. The static properties of the present model are equivalent
to those of a nonlinear sigma-model with anisotropies. In the limit of large
hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to
appear in Phys Rev B, Dec (1994
AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity.
Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1ÎČ. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity
Nucleon-nucleon elastic scattering analysis to 2.5 GeV
A partial-wave analysis of NN elastic scattering data has been completed.
This analysis covers an expanded energy range, from threshold to a laboratory
kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering
data from the EDDA collaboration. The results of both single-energy and
energy-dependent analyses are described.Comment: 23 pages of text. Postscript files for the figures are available from
ftp://clsaid.phys.vt.edu/pub/said/n
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
- âŠ