1,042 research outputs found

    Cohort Analysis of Four Graduating Classes of Occupational Therapy Students\u27 Knowledge of Aging

    Get PDF
    At the same time that the number of senior adults in the United States is steadily rising, there is also a rising shortage of allied health care professionals, including occupational therapists, to meet the current and expected needs of the senior adult population. There are national standards that all occupational therapy programs must meet; however, there is not a set national curriculum. It is assumed that students will enter their respective occupational therapy programs with a base knowledge of aging due to prerequisite requirements. To test that assumption, with Institutional Review Board approval, over four consecutive years 192 first-year, first-semester occupational therapy students were administered the Facts on Aging Quiz along with additional questions regarding year of birth and anticipated employment. Results showed that first-year occupational therapy students’ knowledge of aging was poor (67.9% mean) regardless of their age or population work preference. Most students stated that pediatrics—only 11.5% stated geriatrics—was their preferred population with which to work. Statistical tests indicated a trend of decreasing mean scores of the cohorts. If this trend of decreasing gerontological literacy exists in occupational therapy, other health care disciplines may be experiencing similar fates. Health care education should meet the needs of society and it appears there may be a significant gap that needs to be addressed to prepare health care practitioners to best meet the needs of the current population. Based on these study results, more emphasis needs to be placed on gerontological literacy for new occupational therapy students

    Almost Commuting Matrices, Localized Wannier Functions, and the Quantum Hall Effect

    Full text link
    For models of non-interacting fermions moving within sites arranged on a surface in three dimensional space, there can be obstructions to finding localized Wannier functions. We show that such obstructions are KK-theoretic obstructions to approximating almost commuting, complex-valued matrices by commuting matrices, and we demonstrate numerically the presence of this obstruction for a lattice model of the quantum Hall effect in a spherical geometry. The numerical calculation of the obstruction is straightforward, and does not require translational invariance or introducing a flux torus. We further show that there is a Z2Z_2 index obstruction to approximating almost commuting self-dual matrices by exactly commuting self-dual matrices, and present additional conjectures regarding the approximation of almost commuting real and self-dual matrices by exactly commuting real and self-dual matrices. The motivation for considering this problem is the case of physical systems with additional antiunitary symmetries such as time reversal or particle-hole conjugation. Finally, in the case of the sphere--mathematically speaking three almost commuting Hermitians whose sum of square is near the identity--we give the first quantitative result showing this index is the only obstruction to finding commuting approximations. We review the known non-quantitative results for the torus.Comment: 35 pages, 2 figure

    The hullaballoo over e-learning? Technology and pluralism in economics

    Get PDF
    E-learning vs. “talk and chalk”: this binary opposition presents a conflict that has dominated existing pedagogical research. That technological innovation offers an alternative for pressured educationists to improve efficiency and question the cost-effectiveness of traditional teaching methods creates a false dichotomy. This paper addresses the influence of the erroneous “either/or” position and discards it. It claims that there is no fundamental antagonism between the two methods of instruction and proffers the alternative found in blended learning methods. The meticulous splicing of e-learning and traditional lectures liberates the Economics lecturer to deliver a pluralist perspective. Thus, technology becomes a vital tool enabling educators to escape from the limitation of monist teaching methods and guarantees that economics students can fully engage with the discipline’s vibrant debates. “Contest and controversy; orthodoxy and heterodoxy; critique and reject”: technology’s real role is to facilitate a workable space for the free thinking mind

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR

    Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation

    Get PDF
    The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.Comment: accepted for publication in PR

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap

    Get PDF
    Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weakening in the N=28 shell closure in a neutron-rich nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR

    One-neutron knockout in the vicinity of the N=32 sub-shell closure: 9Be(57Cr,56Cr+ gamma)X

    Get PDF
    The one-neutron knockout reaction 9Be(57Cr,56Cr + gamma)X has been measured in inverse kinematics with an intermediate-energy beam. Cross sections to individual states in 56Cr were partially untangled through the detection of the characteristic gamma-ray transitions in coincidence with the reaction residues. The experimental inclusive longitudinal momentum distribution and the yields to individual states are compared to calculations that combine spectroscopic factors from the full fp shell model and nucleon-removal cross sections computed in a few-body eikonal approach.Comment: PRC, in pres

    Cross-shell excitation in two-proton knockout: Structure of 52^{52}Ca

    Get PDF
    The two-proton knockout reaction 9^9Be(54^{54}Ti,52^{52}Ca+γ + \gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the 52^{52}Ca ground state, the only other sizeable cross section proceeds to a 3−^- level at 3.9 MeV. There is no measurable direct yield to the first excited 2+^+ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of 52^{52}Ca
    • 

    corecore