365 research outputs found

    Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans

    Get PDF
    The endocrine system plays an integral role in the regulation of key life-history traits. Insulin-like growth factor-1 (IGF-1) is a hormone that promotes growth and reproduction, and it has been implicated in the reduction of lifespan. IGF-1 is also capable of responding plastically to environmental stimuli such as resource availability and temperature. Thus pleiotropic control of life-history traits by IGF-1 could provide a mechanism for the evolution of correlated life-history traits in a new or changing environment. An ideal system in which to investigate the role of IGF-1 in life-history evolution exists in two ecotypes of the garter snake Thamnophis elegans, which derive from a single recent ancestral source but have evolved genetically divergent life-history characteristics. Snakes from meadow populations near Eagle Lake, California (USA) exhibit slower growth rates, lower annual reproductive output, and longer median adult lifespans relative to populations along the lakeshore. We hypothesized that the IGF-1 system has differentiated between these ecotypes and can account for increased growth and reproduction and reduced survival in lakeshore vs. meadow snakes. We tested for a difference in plasma IGF-1 levels in free-ranging snakes from replicate populations of each ecotype over three years. IGF-1 levels were significantly associated with adult body size, reproductive output, and season in a manner that reflects established differences in prey ecology and age/size-specific reproduction between the ecotypes. These findings are discussed in the context of theoretical expectations for a trade-off between reproduction and lifespan that is mediated by pleiotropic endocrine mechanisms

    The diversity of population responses to environmental change

    Get PDF
    The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct

    Superconducting diamagnetic fluctuations in ropes of carbon nanotubes

    Full text link
    We report low-temperature magnetisation measurements on a large number of purified ropes of single wall carbon nanotubes. In spite of a large superparamagnetic contribution due to the small ferromagnetic catalytical particles still present in the sample, at low temperature (T<0.5KT < 0.5K) and low magnetic field (H<80OeH < 80 Oe), a diamagnetic signal is detectable. This low temperature diamagnetism can be interpreted as the Meissner effect in ropes of carbon nanotubes which have previously been shown to exhibit superconductivity from transport measurements.Comment: 10 pages 3 figure

    Complex Interplay of Body Condition, Life History, and Prevailing Environment Shapes Immune Defenses of Garter Snakes in the Wild

    Get PDF
    The immunocompetence “pace-of-life” hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two lifehistory ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slowliving snakes should in turn show stronger adaptive defenses. We also assessed the “environmental” hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.Fil: Palacios, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina. Iowa State University. Department of Ecology, Evolution and Organismal Biology; Estados UnidosFil: Cunnick, Joan E.. Iowa State University. Department of Animal Science; Estados UnidosFil: Bronikowski, Anne M.. Iowa State University. Department of Ecology, Evolution and Organismal Biology; Estados Unido
    corecore