101 research outputs found

    MHC class I molecules in Natural Killer cell education and tolerance

    Get PDF
    The immune system needs to respond to danger but remain tolerant to normal cells and tissues. Natural killer cells achieve tolerance to self by the use of inhibitory receptors recognizing MHC class I molecules on healthy cells. Only NK cells expressing such inhibitory receptors for self- MHC class I molecules are allowed to be fully functional through a process of education. Here we have studied this process of education and the nature of the MHC class I mediated influence. We have found that MHC class I molecules exert a quantitative rather than a binary influence on NK cells. This means that NK cells are not “on” or “off” but also everything in-between. We have also found MHC class I molecules to regulate NK cells at multiple levels, such as setting the threshold for activation and determining the quality of NK cell responses to stimulation. Also the formation of the NK cell repertoire is regulated by MHC class I. We propose that this reflects a process in which NK cells continuously sense MHC class I and other relevant inputs and adapt to them. This could serve to maintain NK cell sensitivity to relative changes in stimuli also in a context that is highly dynamic. We have termed this the Rheostat model for NK cell education

    Expression of CD226 is associated to but not required for NK cell education

    Get PDF
    AbstractDNAX accessory molecule-1 (DNAM-1, also known as CD226) is an activating receptor expressed on subsets of natural killer (NK) and T cells, interacts with its ligands CD155 or CD112, and has co-varied expression with inhibitory receptors. Since inhibitory receptors control NK-cell activation and are necessary for MHC-I-dependent education, we investigated whether DNAM-1 expression is also involved in NK-cell education. Here we show an MHC-I-dependent correlation between DNAM-1 expression and NK-cell education, and an association between DNAM-1 and NKG2A that occurs even in MHC class I deficient mice. DNAM-1 is expressed early during NK-cell development, precedes the expression of MHC-I-specific inhibitory receptors, and is modulated in an education-dependent fashion. Cd226−/− mice have missing self-responses and NK cells with a normal receptor repertoire. We propose a model in which NK-cell education prevents or delays downregulation of DNAM-1. This molecule endows educated NK cells with enhanced effector functions but is dispensable for education.</jats:p

    Mass Cytometry Identifies Distinct Lung CD4+ T Cell Patterns in Löfgren’s Syndrome and Non-Löfgren’s Syndrome Sarcoidosis

    Get PDF
    Sarcoidosis is a granulomatous disorder of unknown etiology, characterized by accumulation of activated CD4+ T cells in the lungs. Disease phenotypes Löfgren’s syndrome (LS) and “non-LS” differ in terms of clinical manifestations, genetic background, HLA association, and prognosis, but the underlying inflammatory mechanisms largely remain unknown. Bronchoalveolar lavage fluid cells from four HLA-DRB1*03+ LS and four HLA-DRB1*03− non-LS patients were analyzed by mass cytometry, using a panel of 33 unique markers. Differentially regulated CD4+ T cell populations were identified using the Citrus algorithm, and t-stochastic neighborhood embedding was applied for dimensionality reduction and single-cell data visualization. We identified 19 individual CD4+ T cell clusters differing significantly in abundance between LS and non-LS patients. Seven clusters more frequent in LS patients were characterized by significantly higher expression of regulatory receptors CTLA-4, PD-1, and ICOS, along with low expression of adhesion marker CD44. In contrast, 12 clusters primarily found in non-LS displayed elevated expression of activation and effector markers HLA-DR, CD127, CD39, as well as CD44. Hierarchical clustering further indicated functional heterogeneity and diverse origins of T cell receptor Vα2.3/VÎČ22-restricted cells in LS. Finally, a near-complete overlap of CD8 and Ki-67 expression suggested larger influence of CD8+ T cell activity on sarcoid inflammation than previously appreciated. In this study, we provide detailed characterization of pulmonary T cells and immunological parameters that define separate disease pathways in LS and non-LS. With direct association to clinical parameters, such as granuloma persistence, resolution, or chronic inflammation, these results provide a valuable foundation for further exploration and potential clinical application

    Probing Natural Killer Cell Education by Ly49 Receptor Expression Analysis and Computational Modelling in Single MHC Class I Mice

    Get PDF
    Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors

    DRUG-INDUCED mRNA SIGNATURES ARE ENRICHED FOR THE MINORITY OF GENES THAT ARE HIGHLY HERITABLE

    Get PDF
    The blood gene expression signatures are used as biomarkers for immunological and nonimmunological diseases. 1 Therefore, it is important to understand the variation in blood gene expression patterns and the factors (heritable/non-heritable) that underlie this variation. In this paper, we study the relationship between drug effects on the one hand, and heritable and non-heritable factors influencing gene expression on the other. Understanding of this relationship can help select appropriate targets for drugs aimed at reverting disease phenotypes to healthy states. In order to estimate heritable and non-heritable effects on gene expression, we use Twin-ACE model on a gene expression dataset MuTHER, 2 measured in blood samples from monozygotic and dizygotic twins. In order to associate gene expression with drug effects, we use CMap 3,4 database. We show that, even though the expressions of most genes are driven by non-heritable factors, drugs are more likely to influence expression of genes, driven by heritable rather than non-heritable factors. We further study this finding in the context of a gene regulatory network. We investigate the relationship between the drug effects on gene expression and propagation of heritable and non-heritable factors through regulatory networks. We find that the decisive factor in determining whether a gene will be influenced by a drug is the flow of heritable effects supplied to the gene through regulatory network

    Transplantation of maternal intestinal flora to the newborn after elective cesarean section (SECFLOR) : study protocol for a double blinded randomized controlled trial

    Get PDF
    Background: A complication of elective cesarean section (CS) delivery is its interference with the normal intestinal colonization of the infant, affecting the immune and metabolic signaling in early life-a process that has been associated with long-term morbidity, such as allergy and diabetes. We evaluate, in CS-delivered infants, whether the normal intestinal microbiome and its early life development can be restored by immediate postnatal transfer of maternal fecal microbiota (FMT) to the newborn, and how this procedure influences the maturation of the immune system. Methods: Sixty healthy mothers with planned elective CS are recruited and screened thoroughly for infections. A maternal fecal sample is taken prior to delivery and processed according to a transplantation protocol. After double blinded randomization, half of the newborns will receive a diluted aliquot of their own mother's stool orally administered in breast milk during the first feeding while the other half will be similarly treated with a placebo. The infants are clinically followed, and fecal samples are gathered weekly until the age of 4 weeks, then at the ages of 8 weeks, 3, 6, 12 and 24 months. The parents fill in questionnaires until the age of 24 months. Blood samples are taken at the age of 2-3 days and 3, 6, 12 and 24 months to assess development of major immune cell populations and plasma proteins throughout the first years of life. Discussion: This is the first study to assess long-time effects on the intestinal microbiome and the development of immune system of a maternal fecal transplant given to term infants born by CS.Peer reviewe

    Continuous immunotypes describe human immune variation and predict diverse responses

    Get PDF
    The immune system consists of many specialized cell populations that communicate with each other to achieve systemic immune responses. Our analyses of various measured immune cell population frequencies in healthy humans and their responses to diverse stimuli show that human immune variation is continuous in nature, rather than characterized by discrete groups of similar individuals. We show that the same three key combinations of immune cell population frequencies can define an individual’s immunotype and predict a diverse set of functional responses to cytokine stimulation. We find that, even though interindividual variations in specific cell population frequencies can be large, unrelated individuals of younger age have more homogeneous immunotypes than older individuals. Across age groups, cytomegalovirus seropositive individuals displayed immunotypes characteristic of older individuals. The conceptual framework for defining immunotypes suggested by our results could guide the development of better therapies that appropriately modulate collective immunotypes, rather than individual immune components. Keywords: human immune variation; immune cell composition; systems immunology; agingNational Institutes of Health (U.S.) (Grant R01 HL120724

    Pharmaceutical pollution disrupts the behaviour and predator–prey interactions of two widespread aquatic insects

    Get PDF
    Pharmaceutical pollution represents a rapidly growing threat to ecosystems worldwide. Drugs are now commonly detected in the tissues of wildlife and have the potential to alter the natural expression of behavior, though relatively little is known about how pharmaceuticals impact predator-prey interactions. We conducted parallel laboratory experiments using larval odonates (dragonfly and damselfly nymphs) to investigate the effects of exposure to two pharmaceuticals, cetirizine and citalopram, and their mixture on the outcomes of predator-prey interactions. We found that exposure to both compounds elevated dragonfly activity and impacted their predation success and efficiency in complex ways. While exposure to citalopram reduced predation efficiency, exposure to cetirizine showed varied effects, with predation success being enhanced in some contexts but impaired in others. Our findings underscore the importance of evaluating pharmaceutical effects under multiple contexts and indicate that these compounds can affect predator-prey outcomes at sublethal concentrations

    Combining Flow and Mass Cytometry in the Search for Biomarkers in Chronic Graft-versus-Host Disease

    Get PDF
    Chronic graft-versus-host disease (cGVHD) is a debilitating complication arising in around half of all patients treated with an allogeneic hematopoietic stem cell transplantation. Even though treatment of severe cGVHD has improved during recent years, it remains one of the main causes of morbidity and mortality in affected patients. Biomarkers in blood that could aid in the diagnosis and classification of cGVHD severity are needed for the development of novel treatment strategies that can alleviate symptoms and reduce the need for painful and sometimes complicated tissue biopsies. Methods that comprehensively profile complex biological systems such as the immune system can reveal unanticipated markers when used with the appropriate methods of data analysis. Here, we used mass cytometry, flow cytometry, enzyme-linked immunosorbent assay, and multiplex assays to systematically profile immune cell populations in 68 patients with varying grades of cGVHD. We identified multiple subpopulations across T, B, and NK-cell lineages that distinguished patients with cGVHD from those without cGVHD and which were associated in varying ways with severity of cGVHD. Specifically, initial flow cytometry demonstrated that patients with more severe cGVHD had lower mucosal-associated T cell frequencies, with a concomitant higher level of CD38 expression on T cells. Mass cytometry could identify unique subpopulations specific for cGVHD severity albeit with some seemingly conflicting results. For instance, patients with severe cGVHD had an increased frequency of activated B cells compared to patients with moderate cGVHD while activated B cells were found at a reduced frequency in patients with mild cGVHD compared to patients without cGVHD. Moreover, results indicate it may be possible to validate mass cytometry results with clinically viable, smaller flow cytometry panels. Finally, no differences in levels of blood soluble markers could be identified, with the exception for the semi-soluble combined marker B-cell activating factor/B cell ratio, which was increased in patients with mild cGVHD compared to patients without cGVHD. These findings suggest that interdependencies between such perturbed subpopulations of cells play a role in cGVHD pathogenesis and can serve as future diagnostic and therapeutic targets
    • 

    corecore