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ABSTRACT 

 

The immune system needs to respond to danger but remain tolerant to normal cells and tissues. 

Natural killer cells achieve tolerance to self by the use of inhibitory receptors recognizing MHC 

class I molecules on healthy cells. Only NK cells expressing such inhibitory receptors for self-

MHC class I molecules are allowed to be fully functional through a process of education. Here 

we have studied this process of education and the nature of the MHC class I mediated influence. 

We have found that MHC class I molecules exert a quantitative rather than a binary influence on 

NK cells. This means that NK cells are not “on” or “off” but also everything in-between. We 

have also found MHC class I molecules to regulate NK cells at multiple levels, such as setting 

the threshold for activation and determining the quality of NK cell responses to stimulation. 

Also the formation of the NK cell repertoire is regulated by MHC class I. We propose that this 

reflects a process in which NK cells continuously sense MHC class I and other relevant inputs 

and adapt to them. This could serve to maintain NK cell sensitivity to relative changes in stimuli 

also in a context that is highly dynamic. We have termed this the Rheostat model for NK cell 

education. 
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INTRODUCTION 

 

The immune system is a powerful and utterly complex system consisting of a myriad of 

cells, interacting via receptors and ligands and an array of soluble factors. Its cells and 

molecules circulate our bodies through both blood and lymph (1). The system is far too 

complex to be measured as a whole, using any currently available techniques. The 

immune system is therefore the only functional system lacking adequate laboratory 

tests of function and as a consequence no definitions of  “normal” human immune 

function exist (2). Studies in immunology have been dominated by the use of murine 

model systems that have provided much important knowledge to date. As novel 

experimental technologies are becoming available, a shift towards more detailed studies 

also in human subjects is ongoing (2-5). 

 

 

The evolution of immunity 

The human immune system has developed through evolution but the main purpose of 

this evolution and the relevant selective pressures governing it are not fully understood. 

It is clear that infectious diseases have placed a particularly heavy burden on human 

populations in the past, and still does in certain regions (6). This burden is exemplified 

by the fact that life expectancy of humans, before the industrial revolution was only 

around 25 years (7), largely due to infectious diseases. Obviously, such a burden of 

disease should impose a strong evolutionary pressure on humans to develop counter 

measures. Interestingly, Charles Darwin did not note the selecting pressure of 

infectious disease in his works, despite his awareness of the recent advances on the 

germ theory of disease made by his contemporaries Louis Pasteur and Robert Koch (8). 

Instead, Jack Haldane has been attributed as the first to directly describe the 

evolutionary pressure by infectious disease on human populations. His most famous 

work “Genetics and the origin of species” from 1949 contains a speculative hypothesis 

on the possible resistance to malaria by thalassemia heterozygotes (8). This idea gained 

support when Allison et al described that individuals heterozygous for the Hb-S gene of 

hemoglobin, i.e. the sickle cell trait, were protected from severe malaria infection (9, 

10). Since then, many studies have verified these findings and extended them, revealing 

the strong evolutionary pressure posed by infectious diseases on the evolution of 

human immune systems (11).  

 

 

Allogenic recognition systems 

Contrasting the idea of infectious disease as the main driving force of immune 

evolution are ideas of anti-microbial defenses as late evolutionary readjustments of a 

system initially intended for other purposes (12). The reactions to infectious pathogens 

are always examples of xenogeneic recognition while the detection of other members 

of the same species (conspecifics) represents allogeneic recognition. Some investigators 

claim that the allogenic recognition systems represent evolutionarily older modes of 

recognition and that the immune system was actually created originally to maintain 

individuality against invading cells from other members of the same species. This is 

important to prevent cells and especially genetic material from contaminating the germ-
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line and propagate to the next generation. Important support for this theory, are the 

many examples of natural chimerism described in humans and its possible links to 

disease(13-15). 

 

Compelling data from colonial marine invertebrate species such as the urochordate 

Botryllus Schlosseri shows that such primitive creatures, separated from mammalians 

about 500 million years ago, are crucially dependent on their ability to perform 

allogenic recognition (16). Botryllus Schlosseri colonies grow on natural reefs in the 

Mediterranean Sea and along the North American coastlines and are constantly facing 

the threat of predators, spatial limitation and overgrowth. These factors together 

provide survival benefit to individual zooids growing together in large colonies. Such 

colonies are formed by fusion of individual zooids (16). This fusion is regulated by an 

intricate allogeneic recognition system that have evolved to allow two proximate 

colonies either to fuse or reject each other. This response is determined by a single 

polymorphic locus where only one shared allele will lead to fusion while a mismatch 

will lead to rejection (17). 

The Fu/Hc (Fusability/Histocompatibility) locus found in the Botryllus is not a direct 

homolog of the vertebrate Major Histocompatibility (MHC) genes (18) but the 

similarities between the systems are striking. Similar self/nonself discriminatory 

systems have since been described also in other invertebrates (19) as well as in plants 

where they prevent self-fertilization (20, 21).  

 

Members of the Zipursky lab have described another interesting example of 

self/nonself discrimination at the level of an individual cell. They have described how 

growing neurons in the Drosophila brain avoid dendrite connections with its own cell 

body by using an intricate self-recognition system. In this system, individual neurons 

express alternatively spliced isoforms of the Dscam receptor and homophilic 

interactions between identical isoforms (“self-to-self”) will lead to a repulsive response 

and thus “self-avoidance”(22-24). This fascinating self-recognition system prevents 

growing neurons to form connections with its own cell body.  

 

Together these examples show that systems for allogeneic and self/nonself 

discrimination have evolved several times, and in various shapes and form throughout 

evolution in order to meet various biological requirements and to provide survival 

benefit (25). Understanding the evolutionary purpose of allogeneic recognition in 

humans is to me one of the most fascinating issues of immunology. 

 

 

Hybrid resistance 

One particular form of allogeneic recognition response of particular relevance to this 

thesis is that of “Hybrid Resistance”, HR. It was first described in 1958 by George 

Snell (26, 27) and further supported by data from Cudkowicz et al (28, 29). Hybrid 

resistance describes the ability of an F1 hybrid mouse, which is a progeny of two 

different inbred mouse strains, to reject transplanted bone marrow cells from either one, 

or both of its parental strains (30). 

 

These finding were originally controversial and in violation with the laws of 

transplantation formulated by Snell himself just a few years earlier (31). These laws 
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stated that Histocompatibility antigens were codominantly inherited and thus, no 

foreign allogenic antigens should be expressed on parental cells for the F1 hybrid 

immune system to recognize and react to (31). Such foreign antigens were believed to 

be necessary for graft rejection (31), and therefore hybrid resistance was unexpected. 

 

The molecular explanation for hybrid resistance would take decades to find and 

involved the work of many different groups. Snell himself was able to show that MHC 

related genes were important (32) and Cudkowicz showed that an unknown cell type, 

independent of the thymus but dependent on the bone marrow were responsible for this 

rejection (33). 

 

It was initially proposed that F1 hybrids were able to reject parental hematopoietic, but 

not tissue grafts (30) but more recent data have shown that also reactions to vascular 

tissue in solid organ grafts follow the rules of hybrid resistance and contribute to graft 

rejection (34). 

 

 

NK cells and the “missing self” hypothesis 

In the mid 1970ies several independent groups had described cytotoxicity against tumor 

cells by unimmunized lymphocyte populations, implying that some cell other than T 

cells contributed to target cell rejection (35). This inspired Kiessling et al at the 

Karolinska Institute and Herberman et al at the NIH, to seek and find the first 

descriptions of a population of large granular lymphocytes with a cytotoxic potential, 

distinct from cytotoxic T-cells (36-39). The cells were termed Natural Killer (NK) cells 

due to their ability to kill target cells without prior sensitization (38).  

 

The specificity of the cells was unknown and initial attempts to identify an activating 

receptor similar to the clonal receptors on T- and B-lymphocytes failed. Instead, it 

seemed clear that NK cells and T-cells used completely different modes of target 

recognition, but both involving MHC class I molecules (40).  

 

A breakthrough came in the fall of 1981 as Klas Kärre was writing his doctoral thesis. 

Inspired by the Hybrid resistance theory (30), some foreign submarines (41) and some 

data showing that some malignant cells downregulate their MHC expression during 

tumor progression (42), he proposed the “missing-self” hypothesis for NK cell 

recognition (43). His hypothesis stated that NK cells would react to the loss of MHC 

class I expression on target cells by expressing inhibitory receptors for MHC class I 

(43). A few years later the idea was experimentally supported when tumor cells lacking 

MHC class I expression was shown to be sensitive to NK cell rejection while cells of 

the same tumor cell line expressing normal levels of MHC class I was not (44). This 

fundamental idea has since formed the basis for all current theories on NK cell 

regulation by MHC class I (45). 

 

Interestingly, the concept of missing-self recognition is now a general form of innate 

immune recognition and not exclusive to NK cells. For example it applies to the 

activation of the complement cascade (1). The alternative pathway of complement 

activation is under negative regulation by several molecules such as Factor H, which is 

able to distinguish between self (host), and non-self (microbial) sialic acids. 
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Complement activation will be inhibited in the presence of self but without it 

complement activation will occur (46). 

  

Similarly, phagocytosis by macrophages is under the negative influence of self-

recognition by the inhibitory receptor Signal Regulatory Protein alpha (SIRP") (47). 

This receptor recognizes CD47 on host cells and prevents phagocytosis of “self” 

allowing phagocytosis of “missing-self”(48). Common to all these examples is that 

self-recognition provides a means of inhibiting an activating signal. Missing-self 

recognition is thereby dependent on concurrent activating signals, activating signals in 

NK cells will be discussed in more detail below.  

 

 

Variable receptors for MHC class I 

The molecular explanation to the missing-self hypothesis came when the predicted 

inhibitory NK cell receptors for MHC class I were identified. The Moretta lab 

described the Killer Immunoglobulin-like receptor (KIR) genes (49) and the Wayne 

Yokoyama lab the C-type Lectin like Ly49-receptors (50). The lectin like receptors 

(Ly49) are located in a chromosomal region termed the NK complex (NKC) while the 

Ig-like receptors are confined to the Leukocyte Receptor Complex (LRC). Together 

with the MHC class I molecules, these are the key orchestrators regulating NK cell 

biology in mammals. The MHC, NKC and LRC are located on chromosomes 6, 12 and 

19 respectively in humans. 

 

From an evolutionary point of view it is interesting to note that the variable receptor 

genes of the NKC and LRC have been selectively expanded in different ways in 

different species. In modern humans a large LRC containing 14 KIR-genes is 

responsible for MHC class I (HLA) recognition and NK cell regulation (51, 52). In 

contrast, the NKC is completely contracted and only encodes a pseudogene in humans 

(53). In mice, the situation is the opposite and the NKC includes many variable genes 

of the Ly49 family responsible for MHC class I recognition and NK cell regulation 

(53). At the same time in mice the LRC is contracted and only two KIR genes remain 

but have been moved out of the LRC onto the X chromosome (53). There are no known 

examples of species having expanded both NKC and LRC loci and the reason for why 

rodents and humans have expanded different loci since their evolutionary separation is 

not known.  

 

Most likely such selective expansion events reflect past evolutionary crises where 

expansion of a new MHC class I recognition system favored survival (54).  

 

The generally short life span of these evolving receptors throughout evolution has also 

been viewed as an indication of several competing selecting pressures. For NK cells, 

protection from microbial pathogens is clearly one such influence and the other could 

well be reproduction since NK cells play such a major role in reproductive success. 

Regulating birth weight is crucially important to humans. This is due to bipedalism and 

the narrow pelvic birth canal that comes with it (55). Therefore, strong evolutionary 

pressures influence factors regulating birth weight in humans. The placenta provides 

blood and nutrients to the fetus and its establishment through the process of 

placentation will have a strong impact on birth weight. Placentation is a complicated 
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process where uterine NK cells play a crucial role by remodeling the maternal spiral 

arteries providing nutrients to the fetus(55, 56). This involves NK cell interactions with 

MHC class I and certain KIR-HLA compound genotypes have been linked to various 

outcomes of this process (57). 

 

Because NK cells and their variable receptors are important to both reproduction (55) 

and immunity (53) but in different ways, opposing evolutionary pressures from these 

two could explain why the variable receptor genes have been so transient through 

evolution (55). 

 

On NK cells, both KIRs in humans and Ly49 receptors in mice are clonally expressed 

in variable frequency. Receptors are expressed on NK, NKT- and some T-cells. Each 

receptor is specific for one or a few MHC class I alleles and each NK cell can express 

one or multiple of these receptors, allowing for a complex repertoire of NK cells with 

varying MHC class I specificity in a given individual (45, 58-60). Thereby the Hybrid 

resistance mystery was solved when it was shown that NK cells lacking inhibitory 

receptors specific for parental MHC class I could be responsible for the rejection of 

parental bone marrow grafts (61). Exactly how the complex NK cell receptor repertoire 

is shaped in an individual is an intense area of research and a key focus of this thesis.  

 

Another important inhibitory receptor, conserved in mice and humans, is the 

NKG2A/CD94 inhibitory receptor complex (62). This receptor binds the non-classical 

MHC class I molecule HLA-E in humans (63) and Qa-1b in the mouse (64). Qa-1b and 

HLA-E present leader peptides from classical MHC class I heavy chains, functioning 

like a survey mechanism of MHC class I transcription. The NKG2A/CD94 receptor 

complex, expressed early during NK cell development provides enough inhibitory 

signaling to prevent activation (65) but its exact relationship to the variable KIR and 

Ly49 receptors is not known. It has been proposed that NKG2A could serve as a 

“buffering” receptor for inhibitory KIR interactions with either too low, or too high 

MHC class I affinity (58, 66). This “buffering” mechanism would serve to balance the 

inhibition of NK cells, making them optimally responsive but yet self-tolerance (66). 

 

Despite the various transmembrane receptors being structurally different, their 

signaling pathways seem largely conserved (67-70). This implies evolutionary re-

application of conserved signaling complexes and modules to various types of 

receptors, possibly with different downstream effects.  

The mechanisms of inhibitory signaling from these various receptors are not fully 

understood but it seems clear that termination of activating signals occurs at multiple 

levels of the activating cascade (65, 67, 70-72). 

 

 

NK cell self tolerance and the process of education 

Since the inhibitory receptors on NK cells and their MHC class I ligands are encoded 

on different chromosomes, no genetic mechanism could ensure transcription of only 

inhibitory receptors specific for host MHC class I.  

 

In individuals lacking functional MHC class I expression, such as mice with a targeted 

mutation of !2-microglobulin (!2m) or MHC class I heavy chains (H-2Kb and Db) or 
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the Tap1 gene, as well as humans lacking the Tap1 gene, NK cells still exist in normal 

numbers and are tolerant to self. This despite NK cells being surrounded by MHC class 

I deficient target cells. Self-tolerance in these cases is secured by a hyporesponsive NK 

cell phenotype with an inability to kill target cells via missing-self (73, 74, 75, 117). 

We now know that also in normal individuals, NK cells exist that lack self-specific 

inhibitory receptors and display a similarly hyporesponsive and self-tolerant phenotype 

(76-78).  

 

Together, these data have led to the conclusion that NK cells will go through a process 

of education whereby only NK cells with an ability to be inhibited by self MHC class I 

will be allowed full functionality (45). Three different models have been put forward to 

explain this phenomenon. 1) The Licensing model propose a process of “licensing” in 

which NK cells with an ability to sense MHC class I gain function (79), 2) The 

Disarming model propose that NK cells are by default responsive and auto reactive 

cells unable to sense MHC class I mediated inhibition will instead be “disarmed” and 

made hyporesponsive and thereby tolerant (80). 3) The Rheostat model can be 

considered a unifying model of quantitative tuning of NK cell responsiveness where 

NK cells are more or less responsive depending on the strength of signal received from 

MHC class I in a continuous and reversible way as described further below (81). 

 

 

NK cell activation 

NK cells were named based on their ability to be triggered without prior sensitization 

(38). As such, NK cells were clearly different from T-cells. More recent studies have 

shown that in a context of an immune response NK cells do actually need a priming 

signal delivered in the lymph node in the form of trans-presented IL-15 by CD11chi 

Dendritic cells (82). Also a signal from the cytokine IL-18 seems to be able to provide 

a priming signal for NK cells to respond with IFN-# upon subsequent IL-12 stimulation 

(83). Whether these reflect absolute requirements or just a lowering of thresholds for 

activation making stimulation easier is not known. 

 

In contrast to T- and B-cells, NK cells lack clonally distributed receptors for activation. 

Instead many different receptors contribute to triggering NK cell activation through a 

complex interplay of multiple different activating signaling pathways (68). Interesting 

studies have described the interplay between activating receptors showing that 

activation of one single receptor is not enough for triggering of resting NK cells but 

instead simultaneous co-activating receptor ligation is usually needed (84, 85). One 

exception to this rule is the triggering of the Fc-receptor CD16 (Fc#RIIIb) by antibodies 

stimulating Antibody Dependent Cellular Cytotoxicity (ADCC). This form of 

activation does not require co-activation receptors (84). In general the co-activation 

theory implies that a certain threshold level of activating signal is needed to overcome 

the threshold for activation. The influences regulating the level of this threshold are still 

unknown, but its molecular wiring is being revealed (71). 

 

The ligands for activating receptors on NK cells are diverse and only partially known. 

The NKG2D receptor (86) expressed by all NK cells, #$T-cells and some CD8+ T-cells 

bind various ligands (87) upregulated upon cellular stress such as tumor transformation 

(88, 89) and DNA-damage (90). It seems increasingly clear that the induction of these 
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ligands is more complex than initially proposed. It is probable that different ligands are 

expressed in different tissues and induced by different stressors and also in a variety of 

cell types. For example skin-specific NKG2D ligands have been cloned and proposed 

to regulate wound repair (91, 92). Interesting ideas from the Hayday group have stated 

that NKG2D ligands induced in keratinocytes of the skin, recognized by local 

lymphocytes including NK cells, which could then activate dendritic cells to induce 

adaptive immunity (93). This would thus represent a novel form of immunosurveillance 

where these NKG2D ligands play a central role (93-95).  

 

Also, the importance of these ligands in viral infection is illustrated by the fact that 

Cytomegaloviruses (CMV) has developed mechanisms of targeting certain NKG2D 

ligands as way of interfering with host immune responses (96, 97). 

 

Another group of triggering receptors are the Natural Cytotoxicity receptors 

(NCRs)(98), NKp46 (99), NKp44 (100), NKp30 (101). Proposed ligand for the NKp46 

receptor is haemagglutinins of Influenza virus (102), and for NKp30 the B7-family 

member B7-H6, a ligand that seems to be expressed on tumor cells but not normal cells 

(103). Also another tumor associated molecule, BAT3 has been proposed to be a ligand 

for NKp30 suggesting that triggering of this receptor occurs upon tumor cell 

interactions (104). 

 

An interesting NK cell receptor with both activating and inhibitory signaling capacity is 

the SLAM family receptor CD244 (2B4)(105). This receptor is expressed by all NK 

cell and recognizes the CD48 receptor expressed broadly on hematopoietic cells and 

regulated in part by viral products (106). The fact that the receptor is expressed on all 

NK cells and that its ligand is abundant allow for interesting regulatory influence of this 

receptor which will be discussed in more detail below.  

 

NK cells express a vast number of additional receptors with the ability to trigger 

responses to various targets but many are still poorly understood and will not be 

described further here. 

 

 

NK cell heterogeneity 

Today, NK cells are known to be more than just “Natural Killer” cells. The population 

bearing the typical surface markers CD56 in humans and NK1.1 in the mouse, lacking 

the expression of the CD3% marker of T-cells, have proven to be a more heterogeneous 

population of cells than initially thought and with a variety of functions. 

 

NK cells are circulating both blood and lymph and are residents of most tissues in the 

body (107). They perform various functions beyond cytolysis. For example during 

pregnancy an NK cell subset, distinct from peripheral blood NK cells (108) is abundant 

in the uterus, responsible for remodeling of the spiral arteries necessary for correct 

placentation and essential for successful reproduction. The details of this process are 

still unknown but interactions with MHC class I are important. Interestingly, the only 

MHC class I allele expressed in this tissue is HLA-C and large epidemiological studies 

have shown beneficial effects of certain compound genotypes of MHC class I and their 

corresponding NK cell receptor genes with relation to reproductive success (55, 57).  
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Other interesting examples of tissue specific NK cell subsets are the mucosa-associated 

cells with similarities to NK cells. These cells are found in humans and mice and 

contribute to mucosal homeostasis and immune defenses by producing cytokines such 

as IL-22 in response to infection, regulating the epithelial homeostasis and possibly 

also providing tissue protection from inflammatory responses (109-111). Also, liver 

NK cells are interesting with a distinct phenotype and possibly able to exhibit 

immunological memory(112, 113). Similarly, our group studied pancreatic NK cells 

and found phenotypical differences to splenic NK cells, both in diabetic (NOD) and wt 

mice(114). Together it seems clear that NK cells are a heterogeneous population of 

cells widely distributed and well adjusted to its local tissue niche(107). 
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GENERAL AIMS OF THIS THESIS 
 

 

MHC class I molecules regulate NK cell activation upon target cell encounter. These 

molecules are also essential regulators of various aspects of NK cell biology. Our 

general aim has been to understand the nature of this MHC class I mediated influence. 

In this thesis I have studied the regulation of NK cell function, differentiation and 

repertoire formation by MHC class I. I have studied the quantitative influence of MHC 

class I and together with my supervisors, proposed a model for NK cell education 

termed the Rheostat model.  

 

The three articles included in this thesis represent the main focus of my work as a PhD 

student. However, a lot more work has been done with some interesting findings but 

not yet formulated into manuscripts. In the following sections of my thesis I will 

describe and discuss the results presented in the enclosed papers as well some of the 

unpublished data.  

 

In the first section I will focus on the concept of NK cell education and the various 

models proposed to explain this process. I will discuss the implications of my work 

related to the MHC class I mediated regulation of NK cell function and various aspects 

of NK cell functional regulation by MHC class I.  

 

In the second section, I will describe the findings of paper II-III on the influence of 

MHC class I expression level in target cell recognition and education and then Paper 

III extends this analysis and includes studies of the formation of the NK cell repertoire. 

This process is shown to be regulated by MHC class I can be considered yet another 

layer of regulation provided by MHC class I. 
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METHODOLOGICAL DEVELOPMENT 
 

The work presented in this thesis is based on the use of a novel reductionist 

experimental approach. It builds around various murine models with controlled 

expression of MHC class I molecules and a high-dimension flow cytometry setup 

allowing for detailed studies of very well defined NK cell populations.  

 

 

Mice with altered MHC class I expression 

The first mouse model without functional MHC class I expression was the !2-

microglobulin knock-out mouse created independently in 1989 by Rudolf Jaenisch and 

colleagues at MIT (115), and by the Smithies group at the University of North Carolina 

(116). The resulting MHC class I deficiency of all nucleated cells in these mice paved 

the way for research in the field of NK cell education by allowing studies describing 

the self-tolerance and hyporesponsiveness of !2m-/- NK cells (73, 117).  

 

Interestingly, Bieberich et al created a transgenic mouse expressing a H-2Dd transgene 

on the H-2b background (118). Using this mouse model Höglund et al were able to 

show that MHC class I directly regulates the specificity of NK cells by inducing the 

ability to reject H-2b lymphoma cells (119) as well as normal bone-marrow cells (74). 

 

For the studies described in this thesis MHC class I heavy chain knockout mice (H-2Kb-

/-Db-/-) were used as the negative control for any MHC class I influence. By crossing 

these mice to various MHC class I expressing mice, mice hemizygous for a given MHC 

class I allele were generated and back-crossed so that single MHC class I allele 

expressing mice (Homozygous) were generated (120). These mice include H-2Kb, H-

2Db, H-2Ld and H-2Dd single MHC class I allele mice. They will hereafter be denoted 

by their allelic names throughout the thesis. By using such single MHC class I allele 

expressing mice, the influence of a given MHC class I allele on NK cell function could 

be assessed (45, 120). As described in Paper II and III, we also compared the mice 

expressing a given single MHC allele in a hemi- and homozygous fashion providing a 

system to study the influence of MHC class I expression level on NK cell biology. 

 

 

Polychromatic flow cytometry 

The second aspect of our reductionist system involved a detailed characterization of the 

expression of MHC class I specific receptors. This was required since NK cells often 

express multiple receptors with varying, and often overlapping, specificity for MHC 

class I alleles. Our desire to understand the outcome of individual Receptor-Ligand 

interactions therefore urged us to develop an advanced flow cytometry protocol 

involving the simultaneous detection of 6-7 inhibitory receptors for MHC class I on 

individual NK cells. This tedious exercise involved testing of multiple antibody-

flourochrome combinations as well as staining protocols before finally being 

established. Together with the surface receptor detection parameters, we also include 

markers for NK cells, viable cells, forward and side-scatter parameters as well as 2-3 

functional parameters resulting in a flow cytometry protocol of 13-15 parameters in 
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total. For efficient and standardized analysis of such large data sets we developed 

gating algorithms based on Boolean-statistics using the software suite FlowJo 

(Threestar, California U.S). 

 

 

Single cell activation assays 

Another important technological advancement important to our studies is the recent 

development of assays based on flow cytometry for the functional assessment of 

individual NK cells. These assays are performed in vitro where an activating stimulus 

such as a target cell or a plate bound antibody to an activating NK cell receptor, is 

present. NK cells will respond with upregulation of activation markers such as the 

CD69 antigen (121). They will also, depending on the stimulus respond by secreting 

cytokines such as IFN-# and chemokines into the supernatant. The amount of cytokine 

or chemokine secreted by individual NK cells can now be directly quantified by the 

addition of a chemical inhibitor of exocytosis such as Brefeldin A (122). Another 

important advancement allowing for single-cell measurement of function was the 

identification of the marker CD107a/Lamp1 found in the membrane of vesicles 

secreted from cells, such as the cytotoxic granules on cytotoxic T- and NK cells (123). 

By using this antibody during stimulation of NK cells, the amount of cytotoxic 

responses by individual cells can be estimated from the amount of CD107a staining. 

Such staining is dependent on the release of cytotoxic granules, exposing the antibody 

labeling epitope leading to antibody binding. This important technical advancement has 

been instrumental to the work of this thesis allowing the assessment of function of 

individual NK cells rather than population oriented assays of function. 
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RESULTS AND DISCUSSION  

 

Discussion on the models of NK cell education 

When I started working in the laboratory of Klas Kärre and Petter Höglund, the field of 

NK cell education was focused on the most recent results by Wayne Yokoyama and 

David Raulet showing the existence of NK cells in normal mice, lacking the expression 

of self-specific inhibitory receptors for MHC class I. These cells were shown to be self-

tolerant due to a hyporesponsive phenotype similar to the one of MHC class I deficient 

NK cells described above. These results supported the notion that hyporesponsiveness 

is induced or maintained through NK cell education in order to secure self-tolerance 

and that this occurs even in normal mice and not just in the artificial setting of MHC 

class I deficiency (76, 77). Similar observations were also made in normal human 

subjects (78).  

 

Two seemingly conflicting models were proposed to describe the functional 

development of NK cells under the influence of MHC class I mediated signals. Firstly, 

the “Licensing model” proposed that NK cells are non-functional or hyporesponsive by 

default and only acquire functional competence or “a license to kill” upon MHC class I 

mediated signals during development (76, 79). In contrast to this, Raulet et al proposed 

a “Disarming” model in which NK cells are considered functionally responsive by 

default but would be “disarmed” in the absence of MHC class I mediated inhibition 

during development (77, 80). 

 

Initially it seemed contra-intuitive that signals from inhibitory receptors would transmit 

a “positive” signal inducing “licensing” as proposed by the Yokoyama model (76). 

Also, Raulet and colleagues claimed that the “Disarming model” was more compatible 

with older experimental data (80). The licensing model seemed to predict that NK cell 

interactions with surrounding cells lacking MHC class I, i.e. missing-self targets, would 

not be relevant to NK cell licensing.  

 

This fact seemed incompatible with data from Wu et al who created Bone-Marrow 

chimeras between MHC class I negative and MHC class I-positive bone marrow cells. 

In these chimeric mice tolerance to MHC deficient cells was dominantly induced by the 

presence of MHC class I deficient cells in the chimera. Also data from our own group 

showed similar results when a Dd-transgene introduced in a H-2b mouse model 

accidently was expressed in a mosaic fashion on 20-80% of cells. Also in these DL6 

mice, tolerance to Dd-negative target cells was dominantly induced by the presence of 

Dd-negative cells (124). Again, this result suggested that NK cell education and the 

development of self-tolerance to co-existing missing-self targets depends on 

interactions with such targets and would possibly be more compatible with the 

disarming model of NK cell education (80). 
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As another test of our prediction that NK cell education is quantitatively determined by 

the strength of MHC class I mediated input, we tested the responsiveness of NK cells 

expressing single and multiple Ly49-receptors specific for self-MHC class I. The 

reasoning was that NK cells expressing multiple receptors would receive more MHC 

class I mediated signal and thus be more responsive than cells expressing only one 

receptor. As shown in Paper I, Fig. 6, combinations of Ly49/NKG2A receptors did 

provide synergistic effects on NK cell responsiveness as measured by the amount of 

degranulation supporting the idea that NK cell responsiveness is dependent on the 

strength of inhibitory input during NK cell education. These data were later supported 

by data from Joncker et al also showing synergistic effects of co-expressed inhibitory 

receptors on NK cell responsiveness (125). A study from the Parham group on human 

NK cells provided support for quantitative NK cell education in humans by showing 

that NK cells expressing multiple self-specific KIR receptors responded more strongly 

to missing-self target cells than did single KIR expressing cells (66). These data again 

suggest that NK cell education in both mice and humans is quantitatively regulated by 

the signals from MHC class I. 

 

All tests described above compared NK cells educated via different MHC class I 

interactions involving multiple receptors or MHC alleles making it impossible to 

exclude that differences between different Ly49-MHC interactions would not account 

for the differences seen. We therefor sought to develop a system where the MHC class 

I ligand-receptor interactions would be qualitatively similar but quantitatively different. 

Based on this we crossed our single MHC class I mice to MHC-/- mice to generate 

MHC hemizygous mice. In these mice the cell surface expression levels of MHC class I 

molecules Kb, Db and Dd were heavily reduced (Paper II, Fig. 1 and Paper III, Fig. 

1A). For the Dd allele the reduction was about 50% percent (Paper III, Fig. 1A), 

providing an optimal system to dissect quantitative NK cell education by allowing us to 

study the consequences of interactions between a given Ly49 receptor and its MHC 

class I ligand expressed at either a high, or a lower level.  

 

As shown in Paper III, Fig. 1B, when inoculating MHC deficient cells into Dd+/- and 

Dd+/+ mice respectively, we saw a striking difference in global NK cell mediated 

rejection of MHC class I deficient target cells. NK cells educated by a Dd-ligand 

expressed at a high surface level (Dd+/+) rejected the target cells twice as efficiently as 

Dd+/- NK cells over time. These data imply that NK cells are sensitive to the expression 

level of its MHC class I ligands during education and that during this quantitative 

process, the ability of the NK cell system to reject missing-self targets is set 

proportional to its MHC class I input signals. 

 

 

Differences between differently responsive NK cells 

After seeing the quantitative differences at the population level, we sought to 

understand whether these differences between NK cell populations educated in the 

context of a high educating impact, as compared to a lower educating impact would, be 

reflected by changes at the level of the individual NK cell. The higher level of missing-

self reactivity in vivo in mice with a higher educating impact could in theory be 

explained by 1) a higher frequency of educated NK cells responding to target cells, 2) a 

stronger response by the cells responding or, 3) a combination of both. To delineate 
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these effects, we stimulated NK cells from these various mice in vitro and measured 

single cell responsiveness by flow cytometry.  

 

We found that a high educating impact, such as the presence of multiple MHC class I 

alleles or one strong vs. one weak MHC class I allele, led to a higher frequency of NK 

cells responsive to a given activating stimuli (Paper I, Figs. 2, 3 and 4). Also Dd+/+, as 

compared to Dd+/- NK cells, made more NK cells responsive to stimulation with 

antibody mediated cross-linking of activating receptor NKp46 (Paper III, Figs. 1C). 

Combined these results suggested that NK cell education quantitatively regulates the 

frequency of NK cells responsive to a given activating stimulus. It also suggests that 

the more efficient missing-self rejection in mice with a high educating impact could be 

explained, at least in part by a higher frequency of NK cells responding to the target 

cells in these mice (Paper I and III).  

 

We also measured the quality of the responses elicited by these different NK cell 

populations. We measured the Mean Fluorescence Intensity (MFI) of cytokines 

produced and the simultaneous release of both cytotoxic granules and cytokines and in 

some cases, chemokines.  

 

The rationale for this approach came from recent data on T-cells. Studies had shown 

that the per cell amount of cytokine produced by a given T-cell, as measured by the 

MFI of that cytokine, positively correlated with the ability of the T-cell to 

simultaneously produce complex responses, called polyfunctionality (126). This 

involved a simultaneous production of different cytokines or chemokines and the 

release of cytotoxic granules (127). It was also proposed that such polyfunctionality 

represented a higher quality of T-cell response as compared to a more simple response 

(128, 129). One study had also shown that the presence of polyfunctional T-cell clones 

correlated with a better clinical outcome of Leishmania Major infection (127, 130). 

Also, a study on human NK cells suggested a qualitative difference in responses to 

Influenza A virus infected target cells. This differences was suggested to be linked to 

differences in MHC class I mediated NK cell education (131). 

 

We therefor tested the quality of responses produced by NK cells subsets educated in 

the context of a high and a low educating impact. We found that upon stimulation of 

activating NK cell receptors using cross-linking antibodies, NK cells from mice 

expressing multiple as compared to a single MHC class I allele, one strong vs. a weak 

allele or one given allele in a homo- as compared to a hemizygous fashion, all 

responded with more cytokine or chemokine on a per cell basis as measured as MFI for 

the given parameter upon intracellular staining (Paper I, Fig. 5, Paper III, Fig. S1C). 

Also, the frequency of NK cells displaying polyfunctionality as simultaneous cytokine 

and cytotoxicity (Paper I, Fig. 5) and chemokine secretion (Paper III, Fig. 1C). These 

data suggests that NK cell education, not only determines the frequency of cells 

responding to a given stimuli, but also the quality of responses produced by these NK 

cells. Our data together with the data on qualitative responses in T-cells, suggests that 

polyfunctionality is a common feature of highly efficient lymphocyte populations.  

 

The molecular regulation of polyfunctionality is currently unknown. One interesting 

clue comes from an experimental setting of T-cell receptor (TCR) gene transfer and the 
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When we injected MHC class I hemizygous splenocytes into mice expressing the same 

MHC class I alleles but in a homozygous fashion, no rejection was seen over 4 days of 

follow-up. This clearly show that a 50% reduction of MHC class I expression on 

normal healthy cells does not trigger missing-self rejection in vivo (Paper II, Fig. 2A-

C). To test if we could break this tolerance by inducing a higher state of general 

immune activation in vivo, we pretreated the recipient mice with the Type I Interferon 

inducer Tilorone (Sigma-Aldrich, Stockholm). This drug acts as an Interferon inducer 

when administered orally (138) and stimulates NK cells to be more responsive to target 

cells and to cytokine stimulation. Despite pre-activation NK cells were still completely 

tolerant to inoculated cells expressing half their level of MHC class I, Paper II, Fig. 

2D. From these results we conclude that NK cell tolerance is robust and a loss of more 

than 50% of MHC class I expression is required to trigger missing-self rejection, even 

if NK cells are pre-activated by interferon signals in vivo. 

 

Next we tried to investigate NK cell rejection of splenocytes expressing even less MHC 

class I on their cell surface. We developed a systems using cells lacking functional the 

peptide transporter Tap1, necessary for transport of cytosolic peptides into the 

Endoplasmic reticulum (ER) where MHC class I processing and assembly occurs (139, 

140). In such cells, the empty MHC class I complexes assemble and reach the cell 

surface but are instable and rapidly fall apart (141). Addition of peptides in the 

extracellular fluid can stabilize MHC class I expression if the peptides bind and 

stabilize these empty MHC complexes (142). We took advantage of this and incubated 

Tap1-/- splenocytes with a stabilizing peptide in a titrated range of concentrations to 

induce various levels of surface expression of MHC class I. We were able to stabilize a 

surface expression level of the MHC class I allele Kb between 10-80% of the surface 

level in Kb homozygous mice. When these target cells were inoculated into Kb+/+ mice, 

all cells expressing a level of Kb at 20% or more of Kb+/+ recipients were tolerated while 

cells expressing less than that were rejected, Paper II, Fig. 3. 

 

We conclude from this that there seems to be a threshold for activation in NK cells and 

that this threshold is robustly calibrated to maintain tolerance to normal cells expressing 

a wide range of MHC class I. It is highly possible that cells expressing more ligands for 

activating receptors, such as tumor cells or virally infected cells, upregulating stress 

ligands etc. would trigger NK cell activation more easily than the normal splenocytes 

used in this study. A different pattern has previously been described in a study 

measuring tumor cell rejection by human NK cells. It was found that B-lymphoblastoid 

tumor cells transfected with MHC class I molecules were protected from NK cell 

killing and that protection was quantitative and positively correlated with the amount of 

MHC class I expression on the transfected cells (143). There was therefor a discrepancy 

to our data on normal target cells showing more of a threshold effect on NK cell 

resistance. One possible explanation for this discrepancy is the abundance of ligands 

for activating NK cell receptors presumably present on these B-lymphoblastoid cells. 

Such ligands would probably provide a much stronger activating signal than the healthy 

splenocytes used in our experiments. Thus, in the presence of abundant activating 

signals NK cells are more likely to respond and the response becomes quantitatively 

correlated with the amount of MHC class I expressed. It was also shown in this study 

that MHC class I transfected tumor cells were only protected from naïve but not 





 

 20

FIGURE 4 illustrates our interpretation of our data on a quantitative MHC class I 

influence at the cellular, population and organism level respectively (81). We propose 

that individual NK cells adapt their level of responsiveness to the strength of MHC 

class I mediated inhibitory signals during education. We believe, the purpose of this 

would be to secure robust tolerance to self by only allowing cells able to sense 

inhibition from MHC class I to be fully responsive. However, this does not explain the 

quantitative nature of the process of education. Tolerance does not in theory at least, 

require a quantitative process of education but should be achieved also by a binary 

process where cells able to sense adequate inhibition only would be allowed any 

responsiveness, i.e. “a license to kill”. Instead, our data clearly show that the NK cell 

education system is quantitative.  

 

Could there be a possible selective benefit of having a NK cell population made up of 

more or less potent cells?  

One possible reason might be that it is an important feature for the system to be able to 

call in more potent killers in the event of a more serious challenge. This means that 

having highly efficient cells around is a valuable feature for the systems. However, 

such highly potent cells would need to be kept tightly regulated to prevent 

autoreactivity, and this could in theory be achieved by allowing NK cells to balance 

their responsiveness to their inhibitory signal. In this way the most potent killers will 

also be most tightly regulated, i.e. having the highest threshold for activation due to the 

expression of multiple inhibitory receptors for MHC class I. In this way the NK cell 

population includes cells with different responsiveness and a level of regulation that is 

proportional to this in order to maintain self-tolerance. 

 

Although this idea is highly speculative it could be tested experimentally. So far we 

have mainly tested responsiveness of individual NK cells using antibody-mediated 

cross-linking of activating receptors. This form of stimulation bypasses the inhibitory 

receptors completely and will only test the potency of the activating signaling pathway 

itself. If NK cell subsets were instead triggered by a target cell expressing some MHC 

class I but also enough ligands for activating receptors to override this inhibition and 

trigger the NK cells, one could test whether NK cells expressing only one inhibitory 

receptor would be more likely to respond as compared to NK cells expressing multiple 

receptors specific for the MHC class I molecules on the target cells. One could also test 

the prediction that the cells expressing multiple receptors and still do respond, would 

respond more potently than NK cells expressing only single receptors. This would be 

predicted from our data on NK cells triggered using antibody mediated cross-linking of 

activating receptors, Paper I, Fig. 6. 

 

 

Reversible and continuous tuning of responsiveness 

Our Rheostat model of tuning of activation thresholds could reconcile the two previous 

and contradictory models of NK cell education, the “Licensing”(76, 79) and 

“Disarming”(77, 80) models. Bidirectional tuning of NK cell thresholds for activation 

could serve to increase (“Licensing”) and reduce responsiveness (“Disarming”) as a 

continuously active process of adaptation, FIGURE 5(81). We propose that NK cell 

education is in fact such a continuous process of adaptation rather than just a process 

limited to NK cell development and maturation. In this way, NK cell tuning of 
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Activation induced tuning of NK cell responsiveness 

Several studies have described reduced NK cell responsiveness upon continuous 

stimulation. Non-obese diabetic (NOD) mice (153) display an NK cell defect, which 

has partly been explained by a reduced expression level and dethatched signaling 

pathway of the activating receptor NKG2D, possibly due to continuous ligand 

stimulation in vivo (154). Also when NK cells are co-cultured with ligand expressing 

tumor cells in vitro there is a gradual loss of function of the NKG2D receptor over time 

(155). Whether these findings reflected a tuning of global NK cell responsiveness or 

just an isolated defect in one overstimulated pathway was not clear at this point.  

 

However, when Oppenheim et al expressed the NKG2D ligand Rae1% as a transgene, 

either in squamous epithelium or broadly in all tissues, broader NK cell defects were 

shown. The rejection of b2m-/- cells in vivo was impaired in mice expressing Rae1% 

broadly but interestingly enough, even more impaired in mice expressing this NKG2D 

ligand in squamous epithelia only. This suggests that NK cell responsiveness was tuned 

down as NK cells interacted with Rae1e expressing cells, a tuning that could be 

reversed by global NK cell activation using the TLR3-ligand Poly I:C (156). This 

defect is probably not due to a direct role for NKG2D since NKG2D-/- mice exhibit 

normal missing-self reactivity (157). Instead this suggests that prolonged stimulation 

via NKG2D leads to a reduced responsiveness to other stimuli. Supporting this, 

Coudert et al incubated NK cells with tumor cells transfected with another murine 

NKG2D ligand H60 and found that this led to a markedly reduced responsiveness to 

various different stimuli including RMA/S cells, i.e. missing-self targets (158). 

 

In line with these data on NKG2D engagement, Sun et al and Tripathy et al published 

independent reports of mice expressing the viral glycoprotein m157, a ligand for the 

activating Ly49H receptor in H-2b mice. Also this led to the impairment of Ly49H 

signaling and in some cases to broader NK cell defects involving other activating 

receptor stimuli (159). It also suggested an inability of NK cells to proliferate and 

expand in the context of a viral infection (160), suggesting that tuning mechanisms also 

influences such features. 

 

 

Tuning and cellular adaptation in biology 

Many different cell types use an adaptation or tuning ability to be able to respond to 

relative changes in their surrounding, rather than absolute levels of signals or ligands. 

This adaptation must be determined by continuous input and therefor not only 

influenced by the same input that is strong enough to trigger full activation of cells. 

Previous triggering events would not provide current information on the current 

contextual environment of the cell. Instead more continuous interactions are needed.  

 

It has been widely discussed by Grossman and Paul (161-164) that T-cells might adapt 

to their surrounding by sub-threshold stimulation of their antigen receptor by self-

antigens. This input from self-antigens would be too weak to cause full activation but 

still allow for continuous tuning of the activation threshold. In this way, T-cell anergy 

has been proposed to be a result of a tuning event where the threshold for activation has 

been tuned very high due to the sudden strong stimulus in the absence of co-stimulation 

(164). Also, thymic selection has been proposed to represent a process of tuning where 
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T-cells need to tune up their responsiveness slowly as they pass through the stages of 

selection to be allowed to exit into the periphery (165). 

 

Similarly, nerve cells stimulated by light will adapt to a prolonged stimulation in order 

to maintain sensitivity to subsequent alterations in light stimuli (166). This is what 

happens when we enter a dark room. At first we are blind but after a few seconds of 

adaptation, our visual system is adapted to the lower level of background stimulation 

and we are able to discriminate contours if there is only a little bit of light present. 

 

We believe that similar adaptation processes occur in NK cells. Our hypothesis does 

not only imply input from MHC class I as the tuning input even though that has been 

the focus of our studies. Instead, all possible stimuli that NK cells can sense and 

respond to, would be expected to cause tuning. This includes cytokines such as IL-15, 

necessary for proliferation and survival of NK cells as well as inputs from various 

activating receptors. We believe that the tuning could occur for all these inputs either as 

an integrated net input signal that would induce one master tuning process of 

adaptation, or possibly as individual inputs separately cause tuning of their respective 

signaling pathway with individual adaptive circuits connected to them. 

 

The idea of adaptation in signal transduction pathways is well established. It can be 

accomplished by combinations of various feedback and feed-forward loops where 

protein molecules and transduction pathways can act as computational elements in 

living cells (167). 

 

 

The murine NK cell repertoire 

From the discussions above it is clear that the actions of NK cells are highly determined 

by the MHC class I specific receptors they express. These receptors determine 

specificity and responsiveness of NK cells through interactions of its MHC class I 

ligands. The composition of the NK cell repertoire in an individual is thus a key 

determinant of global NK cell mediated function. As illustrated by Hybrid resistance 

described above, a variable NK cell repertoire where NK cells express different 

combinations of receptors is a prerequisite for allogeneic recognition of partially MHC 

mismatched cells and not only MHC class I deficient cells (168). 

 

Whether there exist mechanisms regulating the formation of this NK cell repertoire or 

not has been a matter of debate for years. Held et al found in 1996 that NK cells 

expressing two inhibitory receptors for an MHC class I allele were less frequent in mice 

expressing that allele than in other mice (169). This have since been confirmed by 

others (59, 170-172). Also in Ly49A-transgenic mice expressing the Dd ligand for this 

receptor, the frequency of cells expressing another Dd specific receptor Ly49G2 was 

reduced (173). 

 

Ly49 receptor genes are assumed to be stably expressed once turned on. This is based 

on data where sorted Ly49+ cells were transferred and followed over 10 days without 

any observed changes in Ly49 expression (174). Based on this assumption and the data 

above two developmental schemes were proposed by Raulet et al. First, the sequential 

expression model proposes that every developing NK cell expresses individual 
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receptors in a cumulative way but in random order. At the same time interactions with 

MHC class I occur and as soon as the NK cell senses adequate inhibitory signal it will 

continue to mature with a stable Ly49 expression (168). The second model is a two step 

selection model in which NK cells with a stochastic Ly49 expression will be tested first 

for its ability to bind MHC class I and secondly that this binding is not too strong (168). 

In a recent analysis using mathematical modeling of these two processes fitted to 

experimental data from multiple MHC class I transgenic mice, we found that the two-

step selection fit the experimental data better than the sequential acquisition model (59). 

It was also shown that an open parameter in the simulations improved fit in many 

instances suggesting that additional mechanisms would contribute to the shaping of the 

repertoire. Such mechanisms could involve influence on subset proliferation and/or 

survival. 

 

Our high dimension flow cytometry protocol allows for the first time for full 

characterization of the near complete Ly49/NKG2A repertoires from MHC class I 

deficient and sufficient mice. In Paper III we present our data and model for the 

shaping of the NK cell repertoire in mice. To focus on quantitative MHC class I effects 

we use the Dd-/-, Dd+/- and Dd+/+ model system whereby we can measure the influence of 

a given, well-characterized MHC class I allele on NK cell repertoire formation. When 

we stained individually for the 4 Ly49 receptors and NKG2A, measuring the 

frequencies of all 32 possible NK cell subsets a pattern was clear. Our results show that 

NK cell subsets expressing multiple receptors (3-5) are less frequent as compared to 

MHC class I deficient mice while the opposite is true for NK cells expressing 1 or 2 

receptors, Paper III, Fig. 2.  

 

To investigate a possible mechanism for this pattern we studied population dynamics of 

NK cell subsets and found that the frequency of pre-apoptotic cells at a given time in 

the spleen of the different mice correlated with the selection patterns, Paper III, Fig. 3. 

As this suggested that there might be a link between population survival, turnover and 

possibly proliferation and selection we decided to study this further. We found that NK 

cells positively selected were more responsive to IL-15 stimulation, proliferated more 

at limiting concentration of IL-15 in vitro and had a regulated expression level of the 

proapototic factor bim upon cytokine deprival, Paper III, Fig. 4.  

 

We conclude from these data that there seems to be a link between MHC class I 

interactions, the formation of the NK cell repertoire and the sensitivity of NK cells to 

IL-15.  

 

Future work should focus on establishing the molecular link between these different 

signaling pathways central to NK cell biology. Cross-regulation between the IL-15 

signaling pathway and the NKG2D activating receptor pathway have recently been 

proposed. Horng et al disrupted the NKG2D pathway by directly targeting the adaptor 

DAP10 for ubiquitination. This made NK cells unresponsive to NKG2D stimuli but 

also to IL-15 (175). It is theoretically possible that the necessary tuning signal 

supporting NK cell function and survival to regulate function and repertoire formation 

is a complex signal of several simultaneous interactions. NK cell priming in the lymph 

node during an immune response requires the trans-presentation of IL-15 by dendritic 

cells (82). Trans-presentation of cytokines in contrast to signals from soluble cytokines 
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have been proposed to serve the purpose of giving context dependent signals, that is 

allowing for cytokine stimulation in conjunction with other simultaneous signals.  

 

My hypothesis would thus be that NK cell interactions with dendritic cells trans-

presenting IL-15 could provide the unique signaling context needed for NK cell tuning. 

If MHC class I interactions and possibly a third signal from NKG2D or other receptors 

occur simultaneously with IL-15 in this unique context of interaction, a different 

downstream signal could result as compared to when these stimuli are given separately. 

This in turn could provide the tuning signal and the adjustment of thresholds for 

activation, cytokine sensitivity etc.  

 

 

NK cell repertoires in mice and men 

The role of MHC class I in shaping the murine NK cell repertoire is well established 

even if the details of this process still remain unclear.  

 

The repertoire of Killer Immunoglobulin-like Receptors (KIRs) in humans have been 

challenging to study due to the variation between individuals as a consequence of 

genetic variations excluded from the inbred laboratory mouse for which population 

genetics is largely ignored. Despite the difficulties, several groups have provided high-

resolution data on NK cell repertoires in humans with interesting patterns (58, 60, 66, 

176-178). It is not yet clear whether a MHC class I dependent mechanism shaping the 

KIR repertoire exists or not, some data suggest this.  

 

To understand this better ongoing analysis by us in collaboration with the Malmberg, 

Uhrberg, Parham and Mehr groups will hopefully bring some clarity to this issue. We 

are working to reanalyze all generated data on human KIR repertoires and murine Ly49 

repertoires in relation to MHC class I using comparable methods of calculation. In 

doing so we hope to find common and disparate patterns for future study. Using the 

increased power of calculations we hope to be able to settle the issue of MHC class I 

mediated control of the KIR repertoire in humans. Preliminary results confirm the 

expected pattern that interindividual variability is significantly greater in human data 

sets as compared to the murine data (Simon et al manuscript in preparation). 

 

 

Non-MHC class I signals in the formation of the NK cell repertoire 

NK cells are surrounded by cells expressing MHC class I and these molecules will 

continuously be ligated by NK cells, possibly providing continuous tuning input 

regulating both function and repertoire formation. Also, other abundant molecules 

could also in theory influence NK cells similarly.  

 

CD244 (2B4) is a receptor expressed on all NK cells recognizing the CD2 family 

receptor CD48 expressed abundantly on most hematopoietic cells. Thus, NK cells 

could in theory be surrounded by cells expressing ligands for 2B4 and continuous 

interactions with such cells could contribute and possibly influence the continuous 

signals from MHC class I. As shown in FIGURE 8, we found that the Ly49 receptor 

repertoire in 2B4-/- mice follow the same pattern as a 2B4+/+ (B6) mouse, as expected 

from the fact that they share the same MHC class I expression (H-2b). The pattern of 
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Hyporesponsive NK cells can only be defined by functional tests. A surface marker 

would be highly useful to better characterize molecular differences between differently 

responsive NK cells. Hyporesponsive NK cells share some similarities with anergic T-

cells and specific surface markers have been described for anergic T-cells (181). We 

therefor tested the expression of surface markers CD98, 4-IBBL and FasL (181) 

without finding any significant differences between MHC-deficient and wt NK cells 

(Data not shown). 

 

Instead the best marker for NK cell responsiveness seems to be the inhibitory surface 

receptor Killer-cell lectin-like receptor G1 (KLRG1)(182) expressed at a higher level 

on educated than MHC-deficient NK cells (151, 183) and also quantitatively regulated 

in correlation with NK cell responsiveness on Dd+/- and Dd+/+ NK cells, Paper III, Fig. 

S2. KLRG1 has been shown to be associated with a senescent T-cell phenotype (182, 

184) but its function is still unclear. Its presumed ligands are cadherin family members. 

Interestingly, KLRG1 k.o mice exhibit normal responses to Lymphocytic 

choriomeningitis virus (LCMV) and MCMV, but also normal RMA/S rejection and 

IFN-# responses to antibody mediated cross-linking of the activating NK1.1 receptor on 

NK cells (185). One study showed that NK cells on free-living, wild mice express 

higher levels of KLRG1, possibly suggesting a role for external influences on KLRG1 

expression, such as infections not occurring in laboratory mice (186). 

 

Clearly more work is needed before any mechanism of NK cell education can be 

described. The potential for using the KLRG1 surface marker to sort out cells with 

different MHC class I experience is very encouraging and should inspire more 

advances towards this end. 

 

 

Cis-interaction between Ly49 receptors and MHC class I in tuning of NK cell 

responsiveness 

It is well established that NK cells can interact with MHC class I both in trans on other 

cells as well as in cis where MHC class I ligands are expressed on the NK cell itself 

(187-189). The importance of the cis-interaction has been elusive but in a recent study 

Held et al have proposed a possible role for cis-interaction in regulating quantitatively 

NK cell responsiveness (190). The model was inspired by data showing how the ITIM-

containing receptor CD22, a negative regulator of B-cell receptor (BCR) signaling 

(191), is in turn regulated by cis-interacting sialic acids in the B-cell membrane (192, 

193). In normal situations most CD22 molecules are located in clusters distant from the 

BCR complex, unable to inhibit B-cell activation. These clusters are maintained by cis-

interaction with sialic acids regulating the number of CD22 molecules in proximity of 

the BCR with a potential to inhibit activating signals is regulated (192). 

 

Translating this to NK cells, Chalifour et al showed that cis-interactions between MHC 

class I and Ly49 receptors in the NK cell membrane serve to sequester Ly49 receptors 

away from the activating synapse where triggering occurs (190). Unengaged Ly49 

receptors were able, by unknown mechanism to inhibit NK cell activation when 

accessing the synapse, even without ligating MHC class I on target cells (190). The 

model suggests that NK cells can quantitatively regulate their responsiveness by 

regulating the amount free or unengaged (in cis) Ly49 receptors (190).  
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CONCLUDING REMARKS 

 

In this thesis and over the years of work we have realized several important features of 

the MHC class I mediated regulation of NK cells. Firstly, the influence is clearly 

quantitative rather than binary meaning that NK cells are never either or, on or off but 

always everywhere in-between. 

 

Also the influence of MHC class I affect multiple aspects of NK cell biology, from 

thresholds to activation, quality of responses to the shaping of the NK cell repertoire. 

We have proposed a theoretical model in which all these processes reflect a process of 

adaptation in the NK cell system to its current context. We have suggested this to be a 

continuously ongoing process of adaptation similar to other adaptive processes 

described in biology and that such adaptation is important for NK cells to remain 

sensitive to challenges even in a context that is always changing. Maybe similar 

processes of adaptation are continuously ongoing in all cells of the immune system and 

the body as a whole and maybe our ideas of NK cells will add a little piece to that 

never-ending puzzle of wonder that is biology. 
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