29 research outputs found

    Testing Method for Air Ultrasonic Transducers Using a Photoacoustic Pulse Source

    Get PDF
    Ultrasonic transducers’ frequency and impulse responses can be determined if a test signal is available that can be adequately characterized. One such source is the expanding plasma bubble caused by a dielectric breakdown that occurs in the focus of the light from a pulse laser. The sound emanating from such a source can be predicted using a theory originally developed for macroscopic blasts if appropriate scaling of energy and plasma volume are included

    Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells

    Get PDF
    Blast-Induced Traumatic Brain Injury (bTBI) describes a spectrum of injuries caused by an explosive force that results in changes in brain function. The mechanism responsible for primary bTBI following a blast shockwave remains unknown. We have developed a pneumatic device that delivers shockwaves, similar to those known to induce bTBI, within a chamber optimal for fluorescence microscopy. Abrupt changes in pressure can be created with and without the presence of shear forces at the surface of cells. In primary cultures of human central nervous system cells, the cellular calcium response to shockwaves alone was negligible. Even when the applied pressure reached 15 atm, there was no damage or excitation, unless concomitant shear forces, peaking between 0.3 to 0.7 Pa, were present at the cell surface. The probability of cellular injury in response to a shockwave was low and cell survival was unaffected 20 hours after shockwave exposure

    Experimental measurement of specific impulse distribution and transient deformation of plates subjected to near-field explosive blasts

    Get PDF
    The shock wave generated from a high explosive detonation can cause significant damage to any objects that it encounters, particularly those objects located close to the source of the explosion. Understanding blast wave development and accurately quantifying its effect on structural systems remains a considerable challenge to the scientific community. This paper presents a comprehensive experimental study into the loading acting on, and subsequent deformation of, targets subjected to near-field explosive detonations. Two experimental test series were conducted at the University of Sheffield (UoS), UK, and the University of Cape Town (UCT), South Africa, where blast load distributions using Hopkinson pressure bars and dynamic target deflections using digital image correlation were measured respectively. It is shown through conservation of momentum and Hopkinson-Cranz scaling that initial plate velocity profiles are directly proportional to the imparted impulse distribution, and that spatial variations in loading as a result of surface instabilities in the expanding detonation product cloud are significant enough to influence the transient displacement profile of a blast loaded plate

    Blast Waves

    No full text

    Blast Waves

    No full text
    corecore