2,280 research outputs found
Lunar navigation study, volume 2 Final report, Jan. - Dec. 1966
Performance data utilization in mission phase, lunar exploration phase, and navigational phase of lunar roving vehicle mission
Scholarly Teaching Fellows: Drivers and (Early) Outcomes
In Australian universities, the majority of teaching is now delivered by casual academics, engaged on short-term, hourly-paid contracts. Casual and continuing academic staff have worked actively through the national tertiary education union to limit casualization, defend the ‘integrated’ academic model of research and teaching, and to improve pay and conditions for casual staff. Since 2012 the union has moved to proactively define new continuing positions for casual staff, as ‘Scholarly Teaching Fellows’, designed to provide job security for casual teaching academics. This paper uses data from a selected range of Enterprise Bargaining Agreements (EBAs) to explore whether this relaxation of the union’s traditional insistence on the teaching/research nexus is successfully reducing precarity while avoiding the further disaggregation of academic work and careers
Unconditionally verifiable blind computation
Blind Quantum Computing (BQC) allows a client to have a server carry out a
quantum computation for them such that the client's input, output and
computation remain private. A desirable property for any BQC protocol is
verification, whereby the client can verify with high probability whether the
server has followed the instructions of the protocol, or if there has been some
deviation resulting in a corrupted output state. A verifiable BQC protocol can
be viewed as an interactive proof system leading to consequences for complexity
theory. The authors, together with Broadbent, previously proposed a universal
and unconditionally secure BQC scheme where the client only needs to be able to
prepare single qubits in separable states randomly chosen from a finite set and
send them to the server, who has the balance of the required quantum
computational resources. In this paper we extend that protocol with new
functionality allowing blind computational basis measurements, which we use to
construct a new verifiable BQC protocol based on a new class of resource
states. We rigorously prove that the probability of failing to detect an
incorrect output is exponentially small in a security parameter, while resource
overhead remains polynomial in this parameter. The new resource state allows
entangling gates to be performed between arbitrary pairs of logical qubits with
only constant overhead. This is a significant improvement on the original
scheme, which required that all computations to be performed must first be put
into a nearest neighbour form, incurring linear overhead in the number of
qubits. Such an improvement has important consequences for efficiency and
fault-tolerance thresholds.Comment: 46 pages, 10 figures. Additional protocol added which allows
arbitrary circuits to be verified with polynomial securit
Genuinely Multipartite Concurrence of N-qubit X-matrices
We find an algebraic formula for the N-partite concurrence of N qubits in an
X-matrix. X- matricies are density matrices whose only non-zero elements are
diagonal or anti-diagonal when written in an orthonormal basis. We use our
formula to study the dynamics of the N-partite entanglement of N remote qubits
in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the
case when each qubit interacts with a partner harmonic oscillator. It is shown
that only one type of GHZ state is prone to entanglement sudden death; for the
rest, N-partite entanglement dies out momentarily. Algebraic formulas for the
entanglement dynamics are given in both cases
Quantum computing on encrypted data
The ability to perform computations on encrypted data is a powerful tool for
protecting privacy. Recently, protocols to achieve this on classical computing
systems have been found. Here we present an efficient solution to the quantum
analogue of this problem that enables arbitrary quantum computations to be
carried out on encrypted quantum data. We prove that an untrusted server can
implement a universal set of quantum gates on encrypted quantum bits (qubits)
without learning any information about the inputs, while the client, knowing
the decryption key, can easily decrypt the results of the computation. We
experimentally demonstrate, using single photons and linear optics, the
encryption and decryption scheme on a set of gates sufficient for arbitrary
quantum computations. Because our protocol requires few extra resources
compared to other schemes it can be easily incorporated into the design of
future quantum servers. These results will play a key role in enabling the
development of secure distributed quantum systems
Recommended from our members
Rotational 3D Printing of Sensor Devices using Reactive Ink Chemistries
This paper charts progress in three key areas of a project supported by both UK
government and UK industry to manufacture novel sensor devices using rotary 3D printing
technology and innovative ink chemistries; (1) the development of an STL file slicing algorithm
that returns constant Z height 2D contour data at a resolution that matches the given print head
setup, allowing digital images to be generated of the correct size without the need for scaling;
(2) the development of image transformation algorithms which allow images to be printed at
higher resolutions using tilted print heads and; (3) the formulation of multi part reaction inks
which combine and react on the substrate to form solid material layers with a finite thickness. A
Direct Light Projection (DLP) technique demonstrated the robustness of the slice data by
constructing fine detailed three dimensional test pieces which were comparable to identical parts
built in an identical way from slice data obtained using commercial software. Material systems
currently under investigation include plaster, stiff polyamides and epoxy polymers and
conductive metallic’s. Early experimental results show conductivities of silver approaching
1.42x105 Siemens/m.Mechanical Engineerin
Genetic and Physiological Responses of \u3ci\u3eBifidobacterium animalis\u3c/i\u3e subsp. \u3ci\u3elactis\u3c/i\u3e to Hydrogen Peroxide Stress
Consumer interest in probiotic bifidobacteria is increasing, but industry efforts to secure high cell viability in foods is determined by these anaerobes’ sensitivity to oxidative stress. To address this limitation, we investigated genetic and physiological responses of two fully sequenced Bifidobacterium animalis subsp. lactis strains, BL-04 and DSM 10140, to hydrogen peroxide (H2O2) stress. Although the genome sequences for these strains are highly clonal, prior work showed they differ in both intrinsic and inducible H2O2 resistance. Transcriptome analysis of early stationary phase cells exposed to a sub-lethal H2O2 concentration detected significant (P2O2 stress resistance might be due to a mutation in a BL-04 gene encoding long chain fatty acid-coA ligase. To explore this possibility, membrane fatty acids were isolated and analyzed by GC-MS. Results confirmed the strains had significantly different lipid profiles; the BL-04 membrane contained higher percentages of C14:0 and C16:0, and lower percentages of C16:1n7 and C18:1n9. Alteration of the DSM 10140 membrane lipid composition using modified growth medium to more closely mimic that of BL-04 yielded cells that showed increased intrinsic resistance to lethal H2O2 challenge, but did not display an inducible H2O2 stress response. Results show deliberate stress induction or membrane lipid modification can be employed to significantly improve H2O2 resistance in B. animalis subsp. lactis strains
Advances in startercultures and cultured foods
With 2005 retail sales close to $4.8 million, cultured dairy products are driving the growth of dairy foods consumption. Starter cultures are of great industrial significance in that they play a vital role in the manufacturing, flavor, and texture development of fermented dairy foods. Furthermore, additional interest in starter bacteria has been generated because of the data accumulating on the potential health benefits of these organisms. Today, starter cultures for fermented foods are developed mainly by design rather than by the traditional screening methods and trial and error. Advances in genetics and molecular biology have provided opportunities for genomic studies of these economically significant organisms and engineering of cultures that focuses on rational improvement of the industrially useful strain. Furthermore, much research has been published on the health benefits associated with ingesting cultured dairy foods and probiotics, particularly their role in modulating immune function. The aim of this review is to describe some of the major scientific advances made in starter and non-starter lactic acid bacteria during the past 10 yr, including genomic studies on dairy starter cultures, engineering of culture attributes, advances in phage control, developments in methods to enumerate lactic acid bacteria and probiotics in dairy foods, and the potential role of cultured dairy foods in modulation of immune function
A Fully Decentralized Hierarchical Transactive Energy Framework for Charging EVs with Local DERs in Power Distribution Systems
The penetration rates of both electric vehicles (EVs) and distributed energy resources (DERs) have been increasing rapidly as appealing options to address the global problems of carbon emissions and fuel supply issues. However, uncoordinated EV charging activities and DER generation result in operational challenges for power distribution systems. Therefore, this article has developed a hierarchical transactive energy (TE) framework to locally induce and coordinate EV charging demand and DER generation in electric distribution networks. Based on a modified version of the alternating direction method of multipliers (ADMMs), two fully decentralized (DEC) peer-to-peer (P2P) trading models are presented, that is, an hour-ahead market and a 5-min-ahead real-time market. Compared to existing P2P electricity markets, this research represents the first attempt to comprehensively incorporate alternating current (ac) power network constraints into P2P electricity trading. The proposed TE framework not only contributes to mitigating operational challenges of distribution systems, but also benefits both EV owners and DER investors through secured local energy transactions. The privacy of market participants is well preserved since the bid data of each participant are not exposed to others. Comprehensive simulations based on the IEEE 33-node distribution system are conducted to demonstrate the feasibility and effectiveness of the proposed method
Lunar navigation study, sections 1 through 7 Final report, Jun. 1964 - May 1965
Lunar navigation analysis using passive nongyro, inertial navigation, and radio frequency technolog
- …