235 research outputs found
Exploring clade differentiation of the Faecalibacterium prausnitzii complex
Faecalibacterium prausnitzii is one of the most prevalent and abundant polyphyletic health18 promoting components of the human gut microbiome with a propensity for dysbiotic decreases. To better understand its biology in the human gut, we specifically explored the divergence pressures acting on F. prausnitzii clades on a global scale. Five F. prausnitzii clades were de novo identified from 55 publicly available genomes and 92 high-quality metagenome assembled genomes. Divergence rate indices were constructed and validated to compare the divergence rates among the different clades and between each of the diverging genes. For each clade we identified specific patterns of diverging functionalities, probably reflecting different ecological propensities, in term of inter-host dispersion capacity or exploitation of different substrates in the gut environment. Finally, we speculate that these differences may explain, at least in part, the observed differences in the overall divergence rates of F. prausnitzii clades in human populations
Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds
Early-life gut microbiota and neurodevelopment in preterm infants: a narrative review
Infants born preterm are at a high risk of both gut microbiota (GM) dysbiosis
and neurodevelopmental impairment. While the link between early dysbiosis
and short-term clinical outcomes is well established, the relationship with longterm infant health has only recently gained interest. Notably, there is a significant overlap in the developmental windows of GM and the nervous system in early life. The connection between GM and neurodevelopment was first described in animal models, but over the last decade a growing body of research has also identified GM features as one of the potential mediators for human neurodevelopmental and neuropsychiatric disorders. In this narrative review, we provide an overview of the developing GM in early life and its prospective relationship with neurodevelopment, with a focus on preterm infants. Animal models have provided evidence for emerging pathways linking early-life GM with brain development. Furthermore, a relationship between both dynamic patterns and static features of the GM during preterm infants’ early life and brain maturation, as well as neurodevelopmental outcomes in early childhood, was documented.
Future human studies in larger cohorts, integrated with studies on animal models, may provide additional evidence and help to identify predictive biomarkers and potential therapeutic targets for healthy neurodevelopment in preterm infants
Microbiota-gut-brain axis and ketogenic diet: how close are we to tackling epilepsy?
The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal
microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic,
immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders,
such as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and epilepsy, paving the way for microbiomebased intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological
condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional
pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions
represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the
mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic
drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the
microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to nonpharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly
accessible and successful intervention strategies
Impact of a synbiotic food on the gut microbial ecology and metabolic profiles
<p>Abstract</p> <p>Background</p> <p>The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains <it>Lactobacillus helveticus </it>Bar13 and <it>Bifidobacterium longum </it>Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects.</p> <p>Results</p> <p>The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The ability of the probiotic <it>L. helveticus </it>and <it>B. longum </it>strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME) analysis. The extent of short chain fatty acids (SCFA), ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP) of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food.</p> <p>Conclusion</p> <p>In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health promoting effects of the synbiotic food.</p
Gut microbiota resilience and recovery after anticancer chemotherapy
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a “healthy” gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients’ health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments
High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach
<p>Abstract</p> <p>Background</p> <p>Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation.</p> <p>Results</p> <p>In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array) for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA) approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject.</p> <p>Conclusion</p> <p>The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.</p
Influence of Lactobacillus kefiri on Intestinal Microbiota and Fecal IgA Content of Healthy Dogs
The increasing incidence of gastrointestinal tract pathologies in dogs and the worrisome topic of antibiotic resistance have raised the need to look for new therapeutic frontiers. Of these, the use of probiotics represents a potential therapeutic alternative. Lactobacillus kefiri (Lk) is a species of Lactobacillus isolated from kefir. Previous studies have demonstrated that its administration in mice downregulates the expression of proinflammatory mediators and increases anti-inflammatory molecules in the gut immune system. It also regulates intestinal homeostasis, incrementing immunoglobulin A (IgA) secretion. Since Lk has never been studied as a single probiotic in dogs, the aim of this study was to evaluate the safety of Lk in dogs, and its effect on IgA secretion and on intestinal microbiota composition. Ten healthy dogs without a history of gastrointestinal diseases were included. The dogs received Lk at a dose of 107 live microorganisms orally, once daily for 30 days. The fecal samples were tested before administration, in the middle, at the end, and 30 days after discontinuation. The IgA secretion concentration and the microbiota composition were evaluated on the fecal samples. The results in this study suggested that Lk did not influence the concentration of IgA, nor significant changes of the intestinal microbiota were observed during and after the treatment. Therefore, additional studies are needed to investigate if a higher daily dosage of Lk can influence the intestinal homeostasis of dogs
Non-invasive Assessment of Fecal Stress Biomarkers in Hunting Dogs During Exercise and at Rest
Intense exercise causes to organisms to have oxidative stress and inflammation at the gastrointestinal (GI) level. The reduction in intestinal blood flow and the exercise-linked thermal damage to the intestinal mucosa can cause intestinal barrier disruption, followed by an inflammatory response. Furthermore, the adaptation to exercise may affect the gut microbiota and the metabolome of the biofluids. The aim of the present research was to evaluate the presence of a GI derangement in hunting dogs through a non-invasive sampling as a consequence of a period of intense exercise in comparison with samples collected at rest. The study included nine dogs that underwent the same training regime for hunting wild boar. In order to counterbalance physiological variations, multiple-day replicates were collected and pooled at each experimental point for each dog. The samples were collected immediately at rest before the training (T0), after 60 days of training (T1), after 60 days of hunting wild boar (T2), and finally, at 60 days of rest after hunting (T3). A number of potential stress markers were evaluated: fecal cortisol metabolites (FCMs) as a major indicator of altered physiological states, immunoglobulin A (IgA) as an indicator of intestinal immune protection, and total antioxidant activity [total antioxidant capacity (TAC)]. Since stool samples contain exfoliated cells, we investigated also the presence of some transcripts involved in GI permeability [occludin (OCLN), protease-activated receptor-2 (PAR-2)] and in the inflammatory mechanism [interleukin (IL)-8, IL-6, IL-1b, tumor necrosis factor alpha (TNF\u3b1), calprotectin (CALP), heme oxygenase-1 (HO-1)]. Finally, the metabolome and the microbiota profiles were analyzed. No variation in FCM and IgA content and no differences in OCLN and CALP gene expression between rest and training were observed. On the contrary, an increase in PAR-2 and HO-1 transcripts, a reduction in total antioxidant activity, and a different profile of microbiota and metabolomics data were observed. Collectively, the data in the present study indicated that physical exercise in our model could be considered a mild stressor stimulus
- …