185 research outputs found
Design and implementation of the AMIGA embedded system for data acquisition
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade
of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m
underground next to the water-Cherenkov stations that form the 23.5 km
large infilled array. The reduced distance between detectors in this denser
area allows the lowering of the energy threshold for primary cosmic ray
reconstruction down to about 10 eV. At the depth of 2.3 m the
electromagnetic component of cosmic ray showers is almost entirely absorbed so
that the buried scintillators provide an independent and direct measurement of
the air showers muon content. This work describes the design and implementation
of the AMIGA embedded system, which provides centralized control, data
acquisition and environment monitoring to its detectors. The presented system
was firstly tested in the engineering array phase ended in 2017, and lately
selected as the final design to be installed in all new detectors of the
production phase. The system was proven to be robust and reliable and has
worked in a stable manner since its first deployment.Comment: Accepted for publication at JINST. Published version, 34 pages, 15
figures, 4 table
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
The Pierre Auger Observatory, being the largest air-shower experiment in the
world, offers an unprecedented exposure to neutral particles at the highest
energies. Since the start of data taking more than 18 years ago, various
searches for ultra-high-energy (UHE, ) photons have
been performed: either for a diffuse flux of UHE photons, for point sources of
UHE photons or for UHE photons associated with transient events like
gravitational wave events. In the present paper, we summarize these searches
and review the current results obtained using the wealth of data collected by
the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on
ultra-high energy photons
A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower Universality
The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼ 0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1–10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
A Search for Photons with Energies Above 2X10(17) eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Ultra-high-energy photons with energies exceeding 10(17) eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10(15) eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 x 10(17) eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10(17) and 10(18) eV
A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources
The combined fit of the measured energy spectrum and distribution of depths of shower maximum of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical scenarios with homogeneous source distributions. Further measurements show that the cosmic-ray arrival directions agree better with the directions and fluxes of catalogs of starburst galaxies and active galactic nuclei than with isotropy. Here, we present a novel combination of both analyses. For that, a three-dimensional universe model containing a nearby source population and a homogeneous background source distribution is built, and its parameters are adapted using a combined fit of the energy spectrum, depth of shower maximum distribution and energy-dependent arrival directions. The model takes into account a symmetric magnetic field blurring, source evolution and interactions during propagation. We use simulated data, which resemble measurements of the Pierre Auger Observatory, to evaluate the method’s sensitivity. With this, we are able to verify that the source parameters as well as the fraction of events from the nearby source population and the size of the magnetic field blurring are determined correctly, and that the data is described by the fitted model including the catalog sources with their respective fluxes and three-dimensional positions. We demonstrate that by combining all three measurements we reach the sensitivity necessary to discriminate between the catalogs of starburst galaxies and active galactic nuclei
Combined Search for UHE Neutrinos from Binary Black Hole Mergers with the Pierre Auger Observatory
We present searches for ultra-high energy (UHE) neutrinos (> 0.1 EeV) with the Pierre Auger Observatory, following up binary black hole (BBH) mergers detected by the LIGO and Virgo detectors via gravitational waves (GWs). In this work, the so-far published BBH mergers are combined as standard candles with a hypothetical isotropic UHE neutrino luminosity L(t − t0) as a function of the time after the respective merger, t − t0. The UHE neutrino emission spectrum is assumed to follow a power law distribution ∝ Ev−2. Using these assumptions, L(t − t0) is probed, taking into account the instantaneous effective area of the Pierre Auger Observatory to UHE neutrinos and the 3D sky localizations of the sources. No UHE neutrino candidates have been found and upper limits on L(t − t0) are obtained for the hypothetical cases of emissions lasting 24 hours and 60 days after the merger, respectively. The corresponding upper limit on the total energy per source emitted in UHE neutrinos does not depend on the emission duration and demonstrates the competitiveness of the Pierre Auger Observatory with dedicated neutrino telescopes
Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory
Multimessenger astronomy has become increasingly important during the past decade. Some astronomical objects have already been successfully observed in the light of multiple messenger signals, allowing for a much deeper understanding of their physical properties. The Pierre Auger Observatory has taken part in multimessenger astronomy with an exhaustive exploration of the ultra-high-energy sky. In this contribution, for the first time, a search for UHE photons from the sources of gravitational waves is presented. Interactions with the cosmic background radiation fields are expected to attenuate any possible flux of ultra-high-energy photons from distant sources and a non-negligible background of air shower events with hadronic origin makes an unambiguous identification of primary photons a challenging task. In the analysis presented here, a selection strategy is applied to both GW sources and air shower events aiming to provide maximum sensitivity to a possible photon signal. At the same time, a window is kept open for hypothetical new-physics processes, which might allow for much larger interaction lengths of photons in the extragalactic medium. Preliminary results on the UHE photon fluence from a selection of GW sources, including the binary neutron star merger GW170817 are presented
AugerPrime Upgraded Electronics
Since 2015, the Pierre Auger Observatory has been undergoing an important upgrade. It consists of the addition of Scintillator Surface Detectors (SSD) on top of the existing Water-Cherenkov Detectors (WCDs), as well as a small Photo-Multiplier Tube (sPMT) inside the WCDs (both excluding the outer crown of the array), an Underground Muon Detectors (UMD) in the limited higher density area, denominated Infill, where the stations are installed at a distance of 750 m instead of the standard 1.5 km (SD750 and later also in the SD433), and a Radio Detector antenna array (RD) at each of the 1660 surface detector stations. To process the signals of all these detector systems and to increase the dynamic range and time resolution, new electronics, Upgraded Unified Boards (UUBs) have been developed and are being produced and deployed at the Observatory. The combination of all of these new features of the Surface Detector (SD) will provide an enhanced capability for answering the still many open questions related to the nature of ultra-high energy cosmic rays. In this work the main characteristics, the production and validation chain, the performances and the status of the implementation of the new Upgraded Unified Boards will be illustrated. The first data collected from the already operational upgraded stations in the array will also be presented
Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory
Lorentz Invariance (LI) implies that the space-time structure is the same for all observers. On the other hand, various quantum gravity theories suggest that it may be violated when approaching the Planck scale. At extreme energies, like those available in the collision of Ultra-High Energy Cosmic Rays (UHECRs) with atmosphere nuclei, one should also expect a change in the interactions due to Lorentz Invariance Violation (LIV). In this work, the effects of LIV on the development of Extensive Air Showers (EAS) have been considered. After having introduced LIV as a perturbation term in the single-particle dispersion relation, a library of simulated showers with different energies, primary particles and LIV strengths has been produced. Possible LIV has been studied using the muon content of air showers measured at the Pierre Auger Observatory. Limits on LIV parameters have been derived from a comparison between the Monte Carlo expectations and muon fluctuation measurements from the Pierre Auger Observatory
Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks
The Pierre Auger Observatory, at present the largest cosmic-ray observatory
ever built, is instrumented with a ground array of 1600 water-Cherenkov
detectors, known as the Surface Detector (SD). The SD samples the secondary
particle content (mostly photons, electrons, positrons and muons) of extensive
air showers initiated by cosmic rays with energies ranging from eV up
to more than eV. Measuring the independent contribution of the muon
component to the total registered signal is crucial to enhance the capability
of the Observatory to estimate the mass of the cosmic rays on an event-by-event
basis. However, with the current design of the SD, it is difficult to
straightforwardly separate the contributions of muons to the SD time traces
from those of photons, electrons and positrons. In this paper, we present a
method aimed at extracting the muon component of the time traces registered
with each individual detector of the SD using Recurrent Neural Networks. We
derive the performances of the method by training the neural network on
simulations, in which the muon and the electromagnetic components of the traces
are known. We conclude this work showing the performance of this method on
experimental data of the Pierre Auger Observatory. We find that our predictions
agree with the parameterizations obtained by the AGASA collaboration to
describe the lateral distributions of the electromagnetic and muonic components
of extensive air showers.Comment: 23 pages, 15 figures. Version accepted for publication in JINS
- …