57 research outputs found

    Activity Planning for a Lunar Orbital Mission

    Get PDF
    This paper describes a challenging, real-world planning problem within the context of a NASA mission called LADEE (Lunar Atmospheric Dust Environment Explorer). LADEEs science phase was performed in an equatorial, retrograde orbit around the Moon. The science observations were constrained with respect to key points in the spacecrafts orbit. We present the approach taken to reduce the complexity of the activity planning task in order to effectively perform it within the time pressures imposed by the mission requirements. One key aspect of this approach is the design of the activity planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, called LASS (LADEE Activity Scheduling System). The primary challenge for LASS was representing and managing the orbit-based science constraints, given their dynamic nature due to the continually updated orbit determination solution

    Anytime synthetic projection: Maximizing the probability of goal satisfaction

    Get PDF
    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans

    NASA TileWorld manual (system version 2.2)

    Get PDF
    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'

    Purposive discovery of operations

    Get PDF
    The Generate, Prune & Prove (GPP) methodology for discovering definitions of mathematical operators is introduced. GPP is a task within the IL exploration discovery system. We developed GPP for use in the discovery of mathematical operators with a wider class of representations than was possible with the previous methods by Lenat and by Shen. GPP utilizes the purpose for which an operator is created to prune the possible definitions. The relevant search spaces are immense and there exists insufficient information for a complete evaluation of the purpose constraint, so it is necessary to perform a partial evaluation of the purpose (i.e., pruning) constraint. The constraint is first transformed so that it is operational with respect to the partial information, and then it is applied to examples in order to test the generated candidates for an operator's definition. In the GPP process, once a candidate definition survives this empirical prune, it is passed on to a theorem prover for formal verification. We describe the application of this methodology to the (re)discovery of the definition of multiplication for Conway numbers, a discovery which is difficult for human mathematicians. We successfully model this discovery process utilizing information which was reasonably available at the time of Conway's original discovery. As part of this discovery process, we reduce the size of the search space from a computationally intractable size to 3468 elements

    Telescope loading: A problem reduction approach

    Get PDF
    This paper presents a problem reduction approach to telescope loading. To study time-varying celestial behavior, astronomers submit periodic observation campaigns which involve a sequence of observations at a given sampling frequency over months or years. The loader's task is to generate an assignment of observation tasks to each night in the time window such that resource demand does not exceed resource capacity and such that the observations usefully contribute to the campaigns' scientific purposes, in a manner that is fair to all participating astronomers

    The entropy reduction engine: Integrating planning, scheduling, and control

    Get PDF
    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance

    The APT/ERE planning and scheduling manifesto

    Get PDF
    The Entropy Reduction Engine, ERE project, is focusing on the construction of integrated planning and scheduling systems. Specifically, the project is studying the problem of integrating planning and scheduling in the context of the closed loop plan use. The results of this research are particularly relevant when there is some element of dynamism in the environment, and thus some chance that a previously formed plan will fail. After a preliminary study of the APT management and control problem, it was felt that it presents an excellent opportunity to show some of the ERE Project's technical results. Of course, the alignment between technology and problem is not perfect, so planning and scheduling for APTs presents some new and difficult challenges as well

    An analysis of commitment strategies in planning: The details

    Get PDF
    We compare the utility of different commitment strategies in planning. Under a 'least commitment strategy', plans are represented as partial orders and operators are ordered only when interactions are detected. We investigate claims of the inherent advantages of planning with partial orders, as compared to planning with total orders. By focusing our analysis on the issue of operator ordering commitment, we are able to carry out a rigorous comparative analysis of two planners. We show that partial-order planning can be more efficient than total-order planning, but we also show that this is not necessarily so

    Planning, scheduling, and control for automatic telescopes

    Get PDF
    This paper presents an argument for the appropriateness of Entropy Reduction Engine (ERE) technology to the planning, scheduling, and control components of Automatic Photoelectric Telescope (APT) management. The paper is organized as follows. In the next section, we give a brief summary of the planning and scheduling requirements for APTs. Following this, in section 3, we give an ERE project precis, couched primarily in terms of project objectives. Section 4 gives a sketch of the match-up between problem and technology, and section 5 outlines where we want to go with this work

    NASA Langley Research Center National Aero-Space Plane Mission simulation profile sets

    Get PDF
    To provide information on the potential for long life service of oxidation resistant carbon-carbon (ORCC) materials in the National Aero-Space Plane (NASP) airframe environment, NASP ascent, entry, and cruise trajectories were analytically flown. Temperature and pressure profiles were generated for 20 vehicle locations. Orbital (ascent and entry) and cruise profile sets from four locations are presented along with the humidity exposure and testing sequences that are being used to evaluate ORCC materials. The four profiles show peak temperatures during the ascent leg of an orbital mission of 2800, 2500, 2000, and 1700 F. These profiles bracket conditions where carbon-carbon might be used on the NASP vehicle
    • …
    corecore