345 research outputs found

    The Loudest Event Statistic: General Formulation, Properties and Applications

    Full text link
    The use of the loudest observed event to generate statistical statements about rate and strength has become standard in searches for gravitational waves from compact binaries and pulsars. The Bayesian formulation of the method is generalized in this paper to allow for uncertainties both in the background estimate and in the properties of the population being constrained. The method is also extended to allow rate interval construction. Finally, it is shown how to combine the results from multiple experiments and a comparison is drawn between the upper limit obtained in a single search and the upper limit obtained by combining the results of two experiments each of half the original duration. To illustrate this, we look at an example case, motivated by the search for gravitational waves from binary inspiral.Comment: 11 pages, 8 figure

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events

    Get PDF
    An up-to-date catalog of nearby galaxies considered as hosts of binary compact objects is provided with complete information about sky position, distance, extinction-corrected blue luminosity and error estimates. With our current understanding of binary evolution, rates of formation and coalescence for binary compact objects scale with massive-star formation and hence the (extinction-corrected) blue luminosity of host galaxies. Coalescence events in binary compact objects are among the most promising gravitational-wave sources for ground-based gravitational-wave detectors such as LIGO. Our catalog and associated error estimates are important for the interpretation of analyses, carried out for LIGO, to constrain the rates of compact binary coalescence, given an astrophysical population model for the sources considered. We discuss how the notion of effective distance, created to account for the antenna pattern of a gravitational-wave detector, must be used in conjunction with our catalog. We note that the catalog provided can be used on other astronomical analysis of populations that scale with galaxy blue luminosity.Comment: 29 pages, 7 figures, Accepted to Astrophysical Journal. To appear in March 20 2008 Astrophysical Journa

    The central density of a neutron star is unaffected by a binary companion at linear order in Ό/R\mu/R

    Get PDF
    Recent numerical work by Wilson, Mathews, and Marronetti [J. R. Wilson, G. J. Mathews and P. Marronetti, Phys. Rev. D 54, 1317 (1996)] on the coalescence of massive binary neutron stars shows a striking instability as the stars come close together: Each star's central density increases by an amount proportional to 1/(orbital radius). This overwhelms any stabilizing effects of tidal coupling [which are proportional to 1/(orbital radius)^6] and causes the stars to collapse before they merge. Since the claimed increase of density scales with the stars' mass, it should also show up in a perturbation limit where a point particle of mass Ό\mu orbits a neutron star. We prove analytically that this does not happen; the neutron star's central density is unaffected by the companion's presence to linear order in Ό/R\mu/R. We show, further, that the density increase observed by Wilson et. al. could arise as a consequence of not faithfully maintaining boundary conditions.Comment: 3 pages, REVTeX, no figures, submitted to Phys Rev D as a Rapid Communicatio

    Quantum corrections to critical phenomena in gravitational collapse

    Get PDF
    We investigate conformally coupled quantum matter fields on spherically symmetric, continuously self-similar backgrounds. By exploiting the symmetry associated with the self-similarity the general structure of the renormalized quantum stress-energy tensor can be derived. As an immediate application we consider a combination of classical, and quantum perturbations about exactly critical collapse. Generalizing the standard argument which explains the scaling law for black hole mass, MâˆâˆŁÎ·âˆ’Î·âˆ—âˆŁÎČM \propto |\eta-\eta^*|^\beta, we demonstrate the existence of a quantum mass gap when the classical critical exponent satisfies ÎČ≄0.5\beta \geq 0.5. When ÎČ<0.5\beta < 0.5 our argument is inconclusive; the semi-classical approximation breaks down in the spacetime region of interest.Comment: RevTeX, 6 pages, 3 figures included using psfi

    Phases of massive scalar field collapse

    Full text link
    We study critical behavior in the collapse of massive spherically symmetric scalar fields. We observe two distinct types of phase transition at the threshold of black hole formation. Type II phase transitions occur when the radial extent (λ)(\lambda) of the initial pulse is less than the Compton wavelength (Ό−1\mu^{-1}) of the scalar field. The critical solution is that found by Choptuik in the collapse of massless scalar fields. Type I phase transitions, where the black hole formation turns on at finite mass, occur when λΌ≫1\lambda \mu \gg 1. The critical solutions are unstable soliton stars with masses \alt 0.6 \mu^{-1}. Our results in combination with those obtained for the collapse of a Yang-Mills field~{[M.~W. Choptuik, T. Chmaj, and P. Bizon, Phys. Rev. Lett. 77, 424 (1996)]} suggest that unstable, confined solutions to the Einstein-matter equations may be relevant to the critical point of other matter models.Comment: 5 pages, RevTex, 4 postscript figures included using psfi

    Radiative falloff in Schwarzschild-de Sitter spacetime

    Get PDF
    We consider the time evolution of a scalar field propagating in Schwarzschild-de Sitter spacetime. At early times, the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far from the black hole has no influence on the evolution. In this early epoch, the field's initial outburst is followed by quasi-normal oscillations, and then by an inverse power-law decay. At intermediate times, the power-law behavior gives way to a faster, exponential decay. At late times, the field behaves as if it were in pure de Sitter spacetime; the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this late epoch, the field's behavior depends on the value of the curvature-coupling constant xi. If xi is less than a critical value 3/16, the field decays exponentially, with a decay constant that increases with increasing xi. If xi > 3/16, the field oscillates with a frequency that increases with increasing xi; the amplitude of the field still decays exponentially, but the decay constant is independent of xi.Comment: 10 pages, ReVTeX, 5 figures, references updated, and new section adde

    Incorporating information from source simulations into searches for gravitational-wave bursts

    Full text link
    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detections and information extraction. We present an algorithmic approach to using catalogs of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations.Comment: 8 pages, 1 figur

    Low-Tech Riparian and Wet Meadow Restoration Increases Vegetation Productivity and Resilience Across Semiarid Rangelands

    Get PDF
    Restoration of riparian and wet meadow ecosystems in semiarid rangelands of the western United States is a high priority given their ecological and hydrological importance in the region. However, traditional restoration approaches are often intensive and costly, limiting the extent over which they can be applied. Practitioners are increasingly trying new restoration techniques that are more cost‐effective, less intensive, and can more practically scale up to the scope of degradation. Unfortunately, practitioners typically lack resources to undertake outcome‐based evaluations necessary to judge the efficacy of these techniques. In this study, we use freely available, satellite remote sensing to explore changes in vegetation productivity (normalized difference vegetation index) of three distinct, low‐tech, riparian and wet meadow restoration projects. Case studies are presented that range in geographic location (Colorado, Oregon, and Nevada), restoration practice (Zeedyk structures, beaver dam analogs, and grazing management), and time since implementation. Restoration practices resulted in increased vegetation productivity of up to 25% and increased annual persistence of productive vegetation. Improvements in productivity with time since restoration suggest that elevated resilience may further enhance wildlife habitat and increase forage production. Long‐term, documented outcomes of conservation are rare; we hope our findings empower practitioners to further monitor and explore the use of low‐tech methods for restoration of ecohydrologic processes at meaningful spatial scales
    • 

    corecore