103 research outputs found

    Tailored Ge-doped fibres for passive electron radiotherapy dosimetry

    Get PDF
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 ÎŒm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications

    Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps

    Get PDF
    We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of 23^{23}Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review

    Reconstructing the nonadaptive radiation of an ancient lineage of ground‐dwelling stick insects (Phasmatodea: Heteropterygidae)

    Get PDF
    Stick and leaf insects (Phasmatodea) are large terrestrial herbivorous arthropods known for masquerading as plant parts such as bark, twigs and leaves. Their evolutionary history is largely shaped by convergent evolution associated with adaptive radiations on geographically isolated landmasses that have repeatedly generated ground-dwelling ecomorphs. The members of one lineage, however, the Oriental Heteropterygidae, are morphologically rather uniform, and have a predominantly ground-dwelling lifestyle. The phylogeny of Heteropterygidae that comprises approximately 130 described species is controversial and remains uncertain. In particular, the systematic position of the giant Jungle Nymph Heteropteryx dilatata, whose males are capable of flight and exhibit the most plesiomorphic wing morphology among extant phasmatodeans, is of major interest to the scientific community. Here, we analysed a set of seven nuclear and mitochondrial genes to infer the phylogeny of Heteropterygidae covering the group's overall diversity. The divergence time estimation and reconstruction of the historical biogeography resulted in an ancestral distribution across Sundaland with long distance dispersal events to Wallacea, the Philippines and the South Pacific. We were able to resolve the relationships among the three principal subgroups of Heteropterygidae and revealed the Dataminae, which contain entirely wingless small forms, as the sister group of Heteropteryginae + Obriminae. Within Heteropteryginae, Haaniella is recovered as paraphyletic in regard to Heteropteryx. Consequently, Heteropteryx must be considered a subordinate taxon deeply embedded within a flightless clade of stick insects. Within Obriminae, the Bornean Hoploclonia is strongly supported as the earliest diverging lineage. Based on this finding, we recognize only two tribes of equal rank among Obriminae, the Hoplocloniini trib. nov. and Obrimini sensu nov. Within the latter, we demonstrate that previous tribal assignments do not reflect phylogenetic relationships and that a basal splitting event occurred between the wing-bearing clade Miroceramia + Pterobrimus and the remaining wingless Obrimini. The Philippine genus Tisamenus is paraphyletic with regard to Ilocano hebardi, thus, we transfer the latter species to Tisamenus as Tisamenus hebardi comb. nov. and synonymize Ilocano with Tisamenus. We discuss character transformations in the light of the new phylogenetic results and conclude that the current taxonomic diversity appears to be mainly driven by allopatry and not to be the result of niche differentiation. This radiation is thus best described as a nonadaptive radiation

    Natural dead sea salt and retrospective dosimetry

    Get PDF
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2–10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361–385 ÂșC and 366–401 ÂșC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    The influence of sampling method on the classification of wetland macroinvertebrate communities

    No full text
    Macroinvertebrate communities sampled by a corer, plankton net and sweep net from five wetlands on the Swan Coastal Plain were compared. The composition of the fauna collected in sweeps and tows was generally similar and differed from that collected in the cores. Cores caught fewer species than tows and sweeps at all wetlands and did not capture fast swimming hemipterans or less abundant taxa. The highest species richness was recorded in sweep samples in four out of the five wetlands. Classification (TWIN-SPAN) and ordination (SSH) of the samples collected in sweeps and tows gave good separation of the wetlands, whereas classification of core samples did not. Coring appeared to be the least suitable sampling method for describing the major components of the macroinvertebrate communities of these wetlands. Plankton tows were useful if the time available for sorting was limited as these samples were free of sediments and generally gave similar results to those obtained with sweeps. Sweeps appeared to be the most useful method for a large classification study as they collected more species and resulted in the best discrimination amongst wetlands
    • 

    corecore