104 research outputs found
Improving the muon track reconstruction of IceCube and IceCube-Gen2
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole.
Its goal is to detect astrophysical neutrinos and identify their sources.
High-energy muon neutrinos are identified through the secondary muons produced
via charge current interactions with the ice. The present best-performing
directional reconstruction of the muon track is a maximum likelihood method
which uses the arrival time distribution of Cherenkov photons registered by the
experiment's photomultipliers. Known systematic shortcomings of this method are
to assume continuous energy loss along the muon track, and to neglect
photomultiplier-related effects such as prepulses and afterpulses. This work
discusses an improvement of about 20% to the muon angular resolution of IceCube
and its planned extension, IceCube-Gen2. In the reconstruction scheme presented
here, the expected arrival time distribution is now parametrized by a
predetermined stochastic muon energy loss pattern. The inclusion of pre- and
afterpulses modelling in the PDF has also been studied, but no noticeable
improvement was found, in particular in comparison to the modification of the
energy loss profile.Comment: Proceeding for the VLVnT-2018 Conferenc
Searches for cross-correlations between IceCube neutrinos and Active Galactic Nuclei selected in various bands of the electromagnetic spectrum
Das IceCube Neutrino Teleskop hat einen diffusen Fluss hochenergetischen astrophysikalischen Neutrinos entdeckten. Allerdings sind die Quellen die für die Mehrzahl der nachgewiesenen Neutrinos verantwortlich sind, noch unbekannt. Diese Arbeit untersucht die Möglichkeit, dass der beobachtete Neutrino-Fluss im Zentrum von aktiven galaktischen Kernen (AGN) erzeugt wird. Eine Stacking-Analyse wird durchgeführt, um die Korrelation zwischen verschiedenen Subpopulationen von AGN und hochenergetischen Neutrinos unter Verwendung von IceCube-Daten aus acht Jahren zu testen. AGN werden anhand ihrer Radioemission, Infrarot-Farbeigenschaften und ihres Röntgenflusses. Die Leuchtkraft der Akkretionsscheibe wird verwendet, um den Beitrag ausgewählter Galaxien zum Neutrinosignal zu gewichten. Die leuchtende AGN-Population trägt zu ~52% des von IceCube gemessenen diffusen Flusses bei 100 TeV mit einem Best-Fit-Spektralindex von 2 bei mit 2.83 sigma post-trial Signifikanz. Für die AGN-Probe mit geringer Leuchtkraft wird eine Signifikanz nach dem Versuch von nur 0.66 sigma gefunden, daher werden Obergrenzen festgelegt. Unter Annahme des Spektralindex für den astrophysikalischen Fluss von 2 und einer gleichverteilten gleiche Zusammensetzung Neutrinoflavour-Zusammensetzung auf der Erde, wird eine obere Flussgrenze berechnet, die den maximalen Beitrag der Kerne von AGN mit geringer Leuchtkraft zum diffusen TeV-PeV-Neutrino-Fluss auf ~51% bei 100 TeV beschränkt. Für diese Arbeit wurde auch eine neue Rekonstruktionsmethode entwickelt. In IceCube werden hochenergetische Myon-neutrinos durch die sekundären Myonen identifiziert, die durch Wechselwirkungen über geladene Ströme mit dem Eis erzeugt werden. In dem hier vorgestellten Rekonstruktionsschema wird die erwartete Ankunftszeitverteilung durch ein vorbestimmtes stochastisches Myon-Energieverlustprofil parametrisiert. Diese realistischere Parametrisierung führt zu einer Verbesserung der Myon-Winkelauflösung in IceCube um etwa 20%.The IceCube neutrino telescope has measured a diffuse flux of high-energy astrophysical neutrinos. However, the sources responsible for the emission of the majority of the detected neutrinos are still unknown. The goal of this thesis is to explore the possibility that the neutrino flux observed by IceCube is produced in the cores of Active Galactic Nuclei (AGN). A stacking analysis is conducted to test for a correlation between various sub-populations of AGN and high-energy neutrinos using eight years of IceCube data. AGN are selected based on their radio emission, infrared color properties, and X-ray flux using the NVSS, AllWISE, ROSAT and XMMSL2 catalogs. The accretion disk luminosity estimated by the observed soft X-ray flux is used as a proxy for the contribution of selected galaxies to the neutrino signal. Two of the three AGN samples tested in this analysis show over-fluctuations, with the highest significance being of 2.83 sigma after trial correction. The luminous AGN population is found to contribute to ~52% of the diffuse flux measured by IceCube at 100 TeV with a best-fit spectral index of 2. For the low-luminosity AGN sample a post-trial significance of only 0.66 sigma is found, therefore upper limits are set. Assuming the spectral index for the astrophysical flux to be 2 and an equal composition of neutrino flavours arriving at Earth, an upper flux limit is calculated which constrains the maximal contribution of the cores of low-luminosity AGN to the diffuse TeV-PeV neutrino flux to be ~51% at 100 TeV. A new reconstruction method has also been developed for this thesis. In IceCube high-energy muon neutrinos are identified through the secondary muons produced via charge current interactions with the ice. In the reconstruction scheme presented in this thesis, the expected arrival time distribution is parameterized by a predetermined stochastic muon energy loss pattern, leading to an improvement of about 20% to the muon angular resolution of IceCube
H.E.S.S. realtime follow-ups of IceCube high-energy neutrino alerts
The evidence for multi-messenger photon and neutrino emission from the blazar
TXS 0506+056 has demonstrated the importance of realtime follow-up of neutrino
events by various ground- and space-based facilities. The effort of H.E.S.S.
and other experiments in coordinating observations to obtain quasi-simultaneous
multiwavelength flux and spectrum measurements has been critical in measuring
the chance coincidence with the high-energy neutrino event IC-170922A and
constraining theoretical models. For about a decade, the H.E.S.S. transient
program has included a search for gamma-ray emission associated with
high-energy neutrino alerts, looking for gamma-ray activity from known sources
and newly detected emitters consistent with the neutrino location. In this
contribution, we present an overview of follow-up activities for realtime
neutrino alerts with H.E.S.S. in 2021 and 2022. Our analysis includes both
public IceCube neutrino alerts and alerts exchanged as part of a joint
H.E.S.S.-IceCube program. We focus on interesting coincidences observed with
gamma-ray sources, particularly highlighting the significant detection of PKS
0625-35, an AGN previously detected by H.E.S.S., and three IceCube neutrinos.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC2023).
See arXiv:2307.13047 for all IceCube contribution
Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo
We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event
Non-standard neutrino interactions in IceCube
Non-standard neutrino interactions (NSI) may arise in various types of new physics. Their existence would change the potential that atmospheric neutrinos encounter when traversing Earth matter and hence alter their oscillation behavior. This imprint on coherent neutrino forward scattering can be probed using high-statistics neutrino experiments such as IceCube and its low-energy extension, DeepCore. Both provide extensive data samples that include all neutrino flavors, with oscillation baselines between tens of kilometers and the diameter of the Earth.
DeepCore event energies reach from a few GeV up to the order of 100 GeV - which marks the lower threshold for higher energy IceCube atmospheric samples, ranging up to 10 TeV.
In DeepCore data, the large sample size and energy range allow us to consider not only flavor-violating and flavor-nonuniversal NSI in the μ−τ sector, but also those involving electron flavor.
The effective parameterization used in our analyses is independent of the underlying model and the new physics mass scale. In this way, competitive limits on several NSI parameters have been set in the past. The 8 years of data available now result in significantly improved sensitivities. This improvement stems not only from the increase in statistics but also from substantial improvement in the treatment of systematic uncertainties, background rejection and event reconstruction
- …